Do you want to publish a course? Click here

$pi^0$ photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

298   0   0.0 ( 0 )
 Added by Michael Dugger
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Differential cross sections for the reaction $gamma p to p pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.



rate research

Read More

Differential cross sections for the reaction $gamma p to n pi^+$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.
155 - W. Luo , E. J. Brash , R. Gilman 2011
We present new data for the polarization observables of the final state proton in the $^{1}H(vec{gamma},vec{p})pi^{0}$ reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1.8 and 5.6 GeV and for $pi^{0}$ scattering angles larger than 75$^{circ}$ in center-of-mass (c.m.) frame. The data extend the polarization measurements data base for neutral pion photoproduction up to $E_{gamma}=5.6 GeV$. The results show non-zero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and $pi^{0}$ scattering angle in c.m. frame. This indicates that HHC does not hold and that the pQCD limit is still not reached in the energy regime of this experiment.
Total and differential cross sections for the reaction p(gamma, eta)p have been measured for photon energies in the range from 750 MeV to 3 GeV. The low-energy data are dominated by the S11 wave which has two poles in the energy region below 2 GeV. Eleven nucleon resonances are observed in their decay into p eta. At medium energies we find evidence for a new resonance N(2070)D15 with (mass, width) = (2068+-22, 295+-40) MeV. At photon energies above 1.5 GeV, a strong peak in forward direction develops, signalling the exchange of vector mesons in the t channel.
The total cross section for gamma p -> 3pi0 p has been measured for the first time from threshold to 1.4 GeV using the tagged photon beam of the Mainz Microtron. The equipment utilized the Crystal Ball multiphoton spectrometer, the TAPS forward detector and a particle identification detector. The gamma p -> 3pi0 p total cross section has two broad enhancements at sqrt{s}~1.5 GeV and 1.7 GeV. We obtained the ratio of the total cross sections gamma p -> 3pi0 p to gamma p -> eta p equal to 0.014 pm 0.001 at sqrt{s}~1.5 GeV.
Differential cross sections for the gamma p -> pi^0 p reaction have been measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C, up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a fine energy and angular binning, increase the existing quantity of pi^0 photoproduction data by ~47%. Owing to the unprecedented statistical accuracy and the full angular coverage, the results are sensitive to high partial-wave amplitudes. This is demonstrated by the decomposition of the differential cross sections in terms of Legendre polynomials and by further comparison to model predictions. A new solution of the SAID partial-wave analysis obtained after adding the new data into the fit is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا