Do you want to publish a course? Click here

Adjoints of composition operators with rational symbol

313   0   0.0 ( 0 )
 Added by Christopher Hammond
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Building on techniques developed by Cowen and Gallardo-Guti{e}rrez, we find a concrete formula for the adjoint of a composition operator with rational symbol acting on the Hardy space $H^{2}$. We consider some specific examples, comparing our formula with several results that were previously known.



rate research

Read More

225 - M. Moller , F.H. Szafraniec 2007
In this paper we {em discuss} diverse aspects of mutual relationship between adjoints and formal adjoints of unbounded operators bearing a matrix structure. We emphasize on the behaviour of row and column operators as they turn out to be the germs of an arbitrary matrix operator, providing most of the information about the latter {as it is the troublemaker}.
224 - Efton Park 2009
Suppose that $phi$ and $psi$ are smooth complex-valued functions on the circle that are invertible, have winding number zero with respect to the origin, and have meromorphic extensions to an open neighborhood of the closed unit disk. Let $T_phi$ and $T_psi$ denote the Toeplitz operators with symbols $phi$ and $psi$ respectively. We give an explicit formula for the determinant of $T_phi T_psi T_phi^{-1} T_psi^{-1}$ in terms of the products of the tame symbols of $phi$ and $psi$ on the open unit disk.
We study a semigroup of weighted composition operators on the Hardy space of the disk $H^2(mathbb{D})$, and more generally on the Hardy space $H^2(U)$ attached to a simply connected domain $U$ with smooth boundary. Motivated by conformal field theory, we establish bounds on the singular values (approximation numbers) of these weighted composition operators. As a byproduct we obtain estimates on the singular values of the restriction operator (embedding operator) $H^2(V) to H^2(U)$ when $U subset V$ and the boundary of $U$ touches that of $V$. Moreover, using the connection between the weighted composition operators and restriction operators, we show that these operators exhibit an analog of the Fisher-Micchelli phenomenon for non-compact operators.
123 - Thomas Kalmes 2020
We study topologizability and power boundedness of weigh-ted composition operators on (certain subspaces of) $mathscr{D}(X)$ for an open subset $X$ of $mathbb{R}^d$. For the former property we derive a characterization in terms of the symbol and the weight of the weighted composition operator, while for the latter property necessary and sufficient conditions on the weight and the symbol are presented. Moreover, for an unweighted composition operator a characterization of power boundedness in terms of the symbol is derived for the special case of a bijective symbol.
We investigate (uniform) mean ergodicity of (weighted) composition operators on the space of smooth functions and the space of distributions, respectively, both over an open subset of the real line. Among other things, we prove that a composition operator with a real analytic diffeomorphic symbol is mean ergodic on the space of distributions if and only if it is periodic (with period 2). Our results are based on a characterization of mean ergodicity in terms of Ces`aro boundedness and a growth property of the orbits for operators on Montel spaces which is of independent interest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا