Do you want to publish a course? Click here

Two-dimensional transport and transfer of a single atomic qubit in optical tweezers

122   0   0.0 ( 0 )
 Added by Antoine Browaeys
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum computers have the capability of out-performing their classical counterparts for certain computational problems. Several scalable quantum computing architectures have been proposed. An attractive architecture is a large set of physically independant qubits, arranged in three spatial regions where (i) the initialized qubits are stored in a register, (ii) two qubits are brought together to realize a gate, and (iii) the readout of the qubits is performed. For a neutral atom-based architecture, a natural way to connect these regions is to use optical tweezers to move qubits within the system. In this letter we demonstrate the coherent transport of a qubit, encoded on an atom trapped in a sub-micron tweezer, over a distance typical of the separation between atoms in an array of optical traps. Furthermore, we transfer a qubit between two tweezers, and show that this manipulation also preserves the coherence of the qubit.



rate research

Read More

We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco, M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. {bf 106}, 080502 (2011)]. For a particular initial state of the coin, this walk is able to perfectly reproduce the spatial probability distribution of the non-localized case of the Grover walk. Here, we present a more detailed proof of this equivalence. We also extend the analysis to other initial states, in order to provide a more complete picture of our walk. We show that this scheme outperforms the Grover walk in the generation of $x$-$y$ spatial entanglement for any initial condition, with the maximum entanglement obtained in the case of the particular aforementioned state. Finally, the equivalence is generalized to wider classes of quantum walks and a limit theorem for the alternate walk in this context is presented.
116 - Daniel Malz , Adam Smith 2020
Previous theoretical and experimental research has shown that current NISQ devices constitute powerful platforms for analogue quantum simulation. With the exquisite level of control offered by state-of-the-art quantum computers, we show that one can go further and implement a wide class of Floquet Hamiltonians, or timedependent Hamiltonians in general. We then implement a single-qubit version of these models in the IBM Quantum Experience and experimentally realize a temporal version of the Bernevig-Hughes-Zhang Chern insulator. From our data we can infer the presence of a topological transition, thus realizing an earlier proposal of topological frequency conversion by Martin, Refael, and Halperin. Our study highlights promises and limitations when studying many-body systems through multi-frequency driving of quantum computers.
The efficiency of extracting single atoms or molecules from an ultracold bosonic reservoir is theoretically investigated for a protocol based on lasers, coupling the hyperfine state in which the atoms form a condensate to another stable state, in which the atom experiences a tight potential in the regime of collisional blockade, the quantum tweezers. The transfer efficiency into the single-atom ground state of the tight trap is fundamentally limited by the collective modes of the condensate, which are thermally and dynamically excited. The noise due to these excitations can be quenched for sufficiently long laser pulses, thereby achieving high efficiencies. These results show that this protocol can be applied for initializing a quantum register based on tweezer traps for neutral atoms.
We propose a realizable experimental scheme to prepare a superposition of the vacuum and one-photon states using a typical cavity QED-setup. This is different from previous schemes, where the superposition state of the field is generated by resonant atom-field interaction and the cavity is initially empty. Here, we consider only dispersive atom-field interaction and the initial state of the cavity field is coherent. Then, we determine the parameters to prepare the desired state via atomic postselection. We also include the effect of cavity losses and detection imperfections in our analysis, against which this preparation of the optical qubit in a real Fabry-P{e}rot superconducting cavity is robust. Additionally, we show that this scheme can be used for the preparation of other photon number Fock state superpositions. In summary, our task is achieved with a high fidelity and a postselection probability within experimental reach
We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a precise microscopic description, which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T1 and T2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا