Roughness induced boundary slip in microchannel flows


Abstract in English

Surface roughness becomes relevant if typical length scales of the system are comparable to the scale of the variations as it is the case in microfluidic setups. Here, an apparent boundary slip is often detected which can have its origin in the assumption of perfectly smooth boundaries. We investigate the problem by means of lattice Boltzmann (LB) simulations and introduce an ``effective no-slip plane at an intermediate position between peaks and valleys of the surface. Our simulations show good agreement with analytical results for sinusoidal boundaries, but can be extended to arbitrary geometries and experimentally obtained surface data. We find that the detected apparent slip is independent of the detailed boundary shape, but only given by the distribution of surface heights. Further, we show that the slip diverges as the amplitude of the roughness increases.

Download