Do you want to publish a course? Click here

Effect of a small disruption of the Ca site on the geometrically frustrated magnetic behavior of Ca3CoRhO6

98   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The compound, Ca3CoRhO6, containing magnetic Co-Rh chains intervened by Ca ions, has been known to be one of the few exhibiting partially disordered antiferromagnetic structure (PDA) due to geometrical frustration. Here, we report the influence of partial replacement of Ca by Y on the magnetic anomalies by investigating the solid solution, Ca(3-x)Y(x)CoRhO6 by bulk measurements. There are profound changes in the magnetic behavior, the most notable one being that the features attributable to spin-chain magnetism and PDA structure get suppressed dramatically by a small replacement of Ca by Y (x= 0.15), despite the fact that the magnetic chain is not disrupted. This finding suggests that this compound is on the verge of PDA-structural-instability.



rate research

Read More

We have investigated the magnetic behavior of the nano crystals, synthesized by high-energy ball-milling, for a well-known geometrically frustrated spin-chain system, Ca3CoRhO6, and compared its magnetic characteristics with those of the bulk form by measuring ac and dc magnetization. The features attributable to the onset of partially disordered antiferromagnetism (characterizing the bulk form) are not seen in the magnetization data of the nano particles; the magnetic moment at high fields in the very low temperature range in the magnetically ordered state gets relatively enhanced in the nano particles. It appears that the ferromagnetic intrachain interaction, judged by the sign of the paramagnetic Curie temperature, is preserved in the nano particles. These trends are opposite to those seen in Ca3Co2O6. However, the complex spin-dynamics as evidenced by large frequency dependence of ac susceptibility is retained in the nano particles as well. Thus, there are some similarities and dissimilarities between the properties of the nano particles and those of the bulk. We believe that these findings would be useful to understand correlation lengths deciding various properties of geometrical frustration and/or spin-chain phenomena.
The results of ac and dc magnetic susceptibility isothermal magnetization and heat-capacity measurements as a function of temperature (T) are reported for Sr3NiRhO6 and Sr3NiPtO6 containing magnetic chains arranged in a triangular fashion in the basal plane and crystallizing in K4CdCl6-derived rhombohedral structure. The results establish that both the compounds are magnetically frustrated, however in different ways. In the case of the Rh compound, the susceptibility data reveal that there are two magnetic transitions, one in the range 10 -15 K and the other appearing as a smooth crossover near 45 K, with a large frequency dependence of ac susceptibility in the range 10 to 40 K; in addition, the features in C(T) are smeared out at these temperatures. The magnetic properties are comparable to those of previously known few compounds with partially disordered antiferromagnetic structure. On the other hand, for Sr3NiPtO6, there is no evidence for long-range magnetic ordering down to 1.8 K despite large value of paramagnetic Curie temperature.
The influence of negative chemical pressure induced by gradual replacement of Ca by Sr as well as of external pressure (up to 10 kbar) on the magnetism of Ca3CoRhO6 has been investigated by magnetization studies. It is found that the solid solution, Ca(3-x)Sr(x)CoRhO6, exists at least till about x= 1.0 without any change in the crystal structure. Apart from insensitivity of the spin-chain feature to volume expansion, the characteristic features of geometrical frustration interestingly appear at the same temperatures for all compositions, in sharp contrast to the response to Y substitution for Ca (reported previously). Interestingly, huge frequency dependence of ac susceptibility known for the parent compound persists for all compositions. We do not find a change in the properties under external pressure. The stability of the magnetic anomalies of this compound to the volume change (about 4%) is puzzling.
We report the bulk magnetic properties of a yet unexplored vanadium-based multivalued spinel system, Zn3V3O8. A Curie-Weiss fit of our dc magnetic susceptibility data in the temperature region from 140 to 300 K yields a Curie constant C = 0.75cm3K/mole V, theta CW = -370 K. We have observed a splitting between the zero field cooled ZFC and field cooled FC susceptibility curves below a temperature Tirr of about 6.3 K. The value of the frustration parameter nearly equals to 100 suggests that the system is strongly frustrated. From the ac susceptibility measurements we find a logarithmic variation of freezing temperature (Tf ) with frequency attesting to the formation of a spin glass below Tf . However, the value of the characteristic frequency obtained from the Vogel-Fulcher fit suggests that the ground state is closer to a cluster glass rather than a conventional spin glass. We explored further consequences of the spin glass behavior and observed aging phenomena and memory effect (both in ZFC and FC). We found that a positive temperature cycle erases the memory, as predicted by the hierarchical model. From the heat capacity CP data, a hump-like anomaly was observed in CP /T at about 3.75 K. Below this temperature the magnetic heat capacity shows a nearly linear dependence with T which is consistent with the formation of a spin glass state below Tf in Zn3V3O8.
We have investigated the magnetic, dielectric and magnetodielectric (MDE) behavior of a geometrically frustrated spin-chain system, Ca3Co1.4Rh0.6O6, in the single crystalline form for different orientations. The results bring out that the magnetic behavior of this compound is by itself interesting in the sense that this compound exhibits an anisotropic glassy-like magnetic behavior with a huge frequency dependence of ac susceptibility peak for an orientation along the spin-chain in the range 30-60 K; this behavior is robust to applications of large external magnetic fields (H) unlike in canonical spin-glasses. The temperature dependence of dielectric constant also shows strong frequency dependence with similar robustness to H. The isothermal H-dependent dielectric results at low temperatures establishes anisotropic MDE coupling. It is intriguing to note that there is a step roughly at one-third of saturation values as in the case of isothermal magnetization curves for same temperatures (for orientation along spin-chain), a correlation hitherto unrealized for geometrically frustrated systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا