We present the performances and the strain sensitivity of the first spherical gravitational wave detector equipped with a capacitive transducer and read out by a low noise two-stage SQUID amplifier and operated at a temperature of 5 K. We characterized the detector performance in terms of thermal and electrical noise in the system output sygnal. We measured a peak strain sensitivity of $1.5cdot 10^{-20} Hz^{-1/2}$ at 2942.9 Hz. A strain sensitivity of better than $5cdot 10{-20}Hz{-1/2}$ has been obtained over a bandwidth of 30 Hz. We expect an improvement of more than one order of magnitude when the detector will operate at 50 mK. Our results represent the first step towards the development of an ultracryogenic omnidirectional detector sensitive to gravitational radiation in the 3kHz range.