Do you want to publish a course? Click here

Bistability of optically-induced nuclear spin orientation in quantum dots

140   0   0.0 ( 0 )
 Added by Alan Russell
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate that bistability of the nuclear spin polarization in optically pumped semiconductor quantum dots is a general phenomenon possible in dots with a wide range of parameters. In experiment, this bistability manifests itself via the hysteresis behavior of the electron Zeeman splitting as a function of either pump power or external magnetic field. In addition, our theory predicts that the nuclear polarization can strongly influence the charge dynamics in the dot leading to bistability in the average dot charge.



rate research

Read More

We show that optical pumping of electron spins in individual InGaAs quantum dots leads to strong nuclear polarisation that we measure via the Overhauser shift (OHS) in magneto-photoluminescence experiments between 0 and 4T. We find a strongly non-monotonous dependence of the OHS on the applied magnetic field, with a maximum nuclear polarisation of 40% for intermediate magnetic fields. We observe that the OHS is larger for nuclear fields anti-parallel to the external field than in the parallel configuration. A bistability in the dependence of the OHS on the spin polarization of the optically injected electrons is found. All our findings are qualitatively understood with a model based on a simple perturbative approach.
We have measured the carrier spin dynamics in p-doped InAs/GaAs quantum dots by pump-probe photo-induced circular dichroism and time-resolved photoluminescence experiments. We show that the hole spin dephasing is controlled by the hyperfine interaction between hole and nuclear spins. In the absence of external magnetic field, we find a characteristic hole spin dephasing time of 15 ns, in close agreement with our calculations based on dipole-dipole coupling between the hole and the quantum dot nuclei. Finally we demonstrate that a small external magnetic field, typically 10 mT instead of 200 mT for the case of electrons, quenches the hyperfine hole spin dephasing.
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a threshold-like enhancement or reduction of the local nuclear field by up to 3 Tesla can be generated by varying the intensity of light. The excitation power threshold for such a nuclear spin switch is found to depend on both external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of spin transfer from electrons to the nuclei of the dot.
151 - M. C. Rogge , E. Rasanen , 2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via non-local suppression of nuclear spin fluctuations in both constituent quantum dots (QDs), while optically addressing only the upper QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Lineshape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا