Do you want to publish a course? Click here

Physisorption of positronium on quartz surfaces

123   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The possibility of having positronium (Ps) physisorbed at a material surface is of great fundamental interest, since it can lead to new insight regarding quantum sticking and is a necessary first step to try to obtain a Ps$_2$ molecule on a material host. Some experiments in the past have produced evidence for physisorbed Ps on a quartz surface, but firm theoretical support for such a conclusion was lacking. We present a first-principles density-functional calculation of the key parameters determining the interaction potential between Ps and an $alpha$-quartz surface. We show that there is indeed a bound state with an energy of 0.14 eV, a value which agrees very well with the experimental estimate of $sim0.15$ eV. Further, a brief energy analysis invoking the Langmuir-Hinshelwood mechanism for the reaction of physisorbed atoms shows that the formation and desorption of a Ps$_2$ molecule in that picture is consistent with the above results.



rate research

Read More

We identify the mechanism of energy dissipation relevant to spin-sensitive nanomechanics including the recently introduced magnetic exchange force microscopy, where oscillating magnetic tips approach surface atomic spins. The tip-surface exchange couples spin and atom coordinates, leading to a spin-phonon problem with Caldeira-Leggett type dissipation. In the overdamped regime, that can lead to a hysteretic flip of the local spin with a large spin-dependent dissipation, even down to the very low experimental tip oscillation frequencies, describing recent observations for Fe tips on NiO. A phase transition to an underdamped regime with dramatic drop of magnetic tip dissipation should in principle be possible by tuning tip-surface distance.
Nuclear resonant inelastic x-ray scattering on quartz structured 57FePO4 as a function of pressure, up to 8 GPa reveals hardening of the low-energy phonons under applied pressures up to 1.5 GPa, followed by a large softening at 1.8 GPa upon approaching the phase transition pressure of ~2 GPa. The pressure-induced phase transitions in quartz-structured compounds have been predicted to be related to a soft phonon mode at the Brillouin-zone boundary (1/3, 1/3, 0) and to the break-down of the Born-stability criteria. Our results provide the first experimental evidence of this predicted phonon softening.
We attempt to simulate the heterogeneous nucleation of ice at model silver-iodide surfaces and find relatively facile ice nucleation and growth at the Ag+ termi nated basal face, but never see nucleation at the I- terminated basal face or the prism and normal faces. Water molecules strongly adsorb onto the Ag+ terminate d face to give a well-ordered hexagonal ice-like bilayer that then acts as a template for further ice growth.
We have studied the vibrational properties of CO adsorbed on platinum and platinum-ruthenium surfaces using density-functional perturbation theory within the Perdew-Burke-Ernzerhof generalized-gradient approximation. The calculated C-O stretching frequencies are found to be in excellent agreement with spectroscopic measurements. The frequency shifts that take place when the surface is covered with ruthenium monolayers are also correctly predicted. This agreement for both shifts and absolute vibrational frequencies is made more remarkable by the frequent failure of local and semilocal exchange-correlation functionals in predicting the stability of the different adsorption sites for CO on transition metal surfaces. We have investigated the chemical origin of the C-O frequency shifts introducing an orbital-resolved analysis of the force and frequency density of states, and assessed the effect of donation and backdonation on the CO vibrational frequency using a GGA + molecular U approach. These findings rationalize and establish the accuracy of density-functional calculations in predicting absolute vibrational frequencies, notwithstanding the failure in determining relative adsorption energies, in the strong chemisorption regime.
Molecular adsorption on surfaces plays a central role in catalysis, corrosion, desalination, and many other processes of relevance to industry and the natural world. Few adsorption systems are more ubiquitous or of more widespread importance than those involving water and carbon, and for a molecular level understanding of such interfaces water monomer adsorption on graphene is a fundamental and representative system. This system is particularly interesting as it calls for an accurate treatment of electron correlation effects, as well as posing a practical challenge to experiments. Here, we employ many-body electronic structure methodologies that can be rigorously converged and thus provide faithful references for the molecule-surface interaction. In particular, we use diffusion Monte-Carlo (DMC), coupled cluster (CCSD(T)), as well as the random phase approximation (RPA) to calculate the strength of the interaction between water and an extended graphene surface. We establish excellent, sub-chemical, agreement between the complementary high-level methodologies, and an adsorption energy estimate in the most stable configuration of approximately -100,meV is obtained. We also find that the adsorption energy is rather insensitive to the orientation of the water molecule on the surface, despite different binding motifs involving qualitatively different interfacial charge reorganisation. In producing the first demonstrably accurate adsorption energies for water on graphene this work also resolves discrepancies amongst previously reported values for this widely studied system. It also paves the way for more accurate and reliable studies of liquid water at carbon interfaces with cheaper computational methods, such as density functional theory and classical potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا