Do you want to publish a course? Click here

Hidden past of dark energy cosmological models

262   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we analyse the possibility of having homogeneous isotropic cosmological models with observers reaching $t=infty$ in finite proper time. It is shown that just observationally-suggested dark energy models with $win(-5/3,-1)$ show this feature and that they are endowed with an exotic curvature singularity. Furthermore, it is shown that non-accelerated observers in these models may experience a duration of the universe as short as desired by increasing their linear momentum. A subdivision of phantom models in two families according to this behavior is suggested.



rate research

Read More

We consider cosmological models with a dynamical dark energy field, and study the presence of three types of commonly found instabilities, namely ghost (when fields have negative kinetic energy), gradient (negative momentum squared) and tachyon (negative mass squared). In particular, we study the linear scalar perturbations of theories with two interacting scalar fields as a proxy for a dark energy and matter fields, and explicitly show how canonical transformations relate these three types of instabilities with each other. We generically show that low-energy ghosts are equivalent to tachyonic instabilities, and that high-energy ghosts are equivalent to gradient instabilities. Via examples we make evident the fact that whenever one of these fields exhibits an instability then the entire physical system becomes unstable, with an unbounded Hamiltonian. Finally, we discuss the role of interactions between the two fields, and show that whereas most of the time interactions will not determine whether an instability is present or not, they may affect the timescale of the instability. We also find exceptional cases in which the two fields are ghosts and hence the physical system is seemingly unstable, but the presence of interactions actually lead to stable solutions. These results are very important for assessing the viability of dark energy models that may exhibit ghost, gradient or tachyonic modes.
82 - Genly Leon 2018
We study the phase space of the quintom cosmologies for a class of exponential potentials. We combine normal forms expansions and the center manifold theory in order to describe the dynamics near equilibrium sets. Furthermore, we construct the unstable and center manifold of the massless scalar field cosmology motivated by the numerical results given in Lazkoz and Leon (Phys Lett B 638:303. arXiv:astro-ph/0602590, 2006). We study the role of the curvature on the dynamics. Several monotonic functions are defined on relevant invariant sets for the quintom cosmology. Finally, conservation laws of the cosmological field equations and algebraic solutions are determined by using the symmetry analysis and the singularity analysis.
173 - Seyen Kouwn , Phillial Oh 2012
We propose a dark energy model with a logarithmic cosmological fluid which can result in a very small current value of the dark energy density and avoid the coincidence problem without much fine-tuning. We construct a couple of dynamical models that could realize this dark energy at very low energy in terms of four scalar fields quintessence and discuss the current acceleration of the Universe. Numerical values can be made to be consistent with the accelerating Universe with adjustment of the two parameters of the theory. The potential can be given only in terms of the scale factor, but the explicit form at very low energy can be obtained in terms of the scalar field to yield of the form V(phi)=exp(-2phi)(frac{4 A}{3}phi+B). Some discussions and the physical implications of this approach are given.
I discuss the dark energy characterized by the violation of the null energy condition ($varrho + p geq 0$), dubbed phantom. Amazingly, it is admitted by the current astronomical data from supernovae. We discuss both classical and quantum cosmological models with phantom as a source of matter and present the phenomenon called phantom duality.
We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and violates the time reversal symmetry. We show that if to replace the cosmological time $t$ appearing in the equation describing the evolution of the Universe by the Hubble cosmological scale time, then we obtain time dependent $Lambda (t)$ in the form of the series of even powers of the Hubble parameter $H$: $Lambda (t) = Lambda (H)$. Out special attention is focused on radioactive like exponential form of the decay process of the dark energy and on the consequences of this type decay.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا