Do you want to publish a course? Click here

Identifying network communities with a high resolution

136   0   0.0 ( 0 )
 Added by Jianhua Ruan
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.



rate research

Read More

To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.
The concept of community detection has long been used as a key device for handling the mesoscale structures in networks. Suitably conducted community detection reveals various embedded informative substructures of network topology. However, regarding the practical usage of community detection, it has always been a tricky problem to assign a reasonable community resolution for networks of interest. Because of the absence of the unanimously accepted criterion, most of the previous studies utilized rather ad hoc heuristics to decide the community resolution. In this work, we harness the concept of consistency in community structures of networks to provide the overall community resolution landscape of networks, which we eventually take to quantify the reliability of detected communities for a given resolution parameter. More precisely, we exploit the ambiguity in the results of stochastic detection algorithms and suggest a method that denotes the relative validity of community structures in regard to their stability of global and local inconsistency measures using multiple detection processes. Applying our framework to synthetic and real networks, we confirm that it effectively displays insightful fundamental aspects of community structures.
We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.
The study of community structure has been a hot topic of research over the last years. But, while successfully applied in several areas, the concept lacks of a general and precise notion. Facts like the hierarchical structure and heterogeneity of complex networks make it difficult to unify the idea of community and its evaluation. The global functional known as modularity is probably the most used technique in this area. Nevertheless, its limits have been deeply studied. Local techniques as the ones by Lancichinetti et al. and Palla et al. arose as an answer to the resolution limit and degeneracies that modularity has. Here we start from the algorithm by Lancichinetti et al. and propose a unique growth process for a fitness function that, while being local, finds a community partition that covers the whole network, updating the scale parameter dynamically. We test the quality of our results by using a set of benchmarks of heterogeneous graphs. We discuss alternative measures for evaluating the community structure and, in the light of them, infer possible explanations for the better performance of local methods compared to global ones in these cases.
Social impacts and degrees of organization inherent to opinion formation for interacting agents on networks present interesting questions of general interest from physics to sociology. We present a quantitative analysis of a case implying an evolving small size network, i.e. that inherent to the ongoing debate between modern creationists (most are Intelligent Design (ID) proponents (IDP)) and Darwins theory of Evolution Defenders (DED)). This study is carried out by analyzing the structural properties of the citation network unfolded in the recent decades by publishing works belonging to members of the two communities. With the aim of capturing the dynamical aspects of the interaction between the IDP and DED groups, we focus on $two$ key quantities, namely, the {it degree of activity} of each group and the corresponding {it degree of impact} on the intellectual community at large. A representative measure of the former is provided by the {it rate of production of publications} (RPP), whilst the latter can be assimilated to the{it rate of increase in citations} (RIC). These quantities are determined, respectively, by the slope of the time series obtained for the number of publications accumulated per year and by the slope of a similar time series obtained for the corresponding citations. The results indicate that in this case, the dynamics can be seen as geared by triggered or damped competition. The network is a specific example of marked heterogeneity in exchange of information activity in and between the communities, particularly demonstrated through the nodes having a high connectivity degree, i.e. opinion leaders.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا