We discuss how all variant 10d and 11d maximal supergravities, including star supergravities and supergravities in different signatures, can be obtained as different real slices of three complex actions. As an application we study the recently introduced domain-wall/cosmology correspondence in this approach. We give an example in 9d and 10d where the domain-wall and corresponding cosmology can be viewed as different real slices of the same complex solution. We argue how in this case the pseudo-supersymmetry of the cosmological solutions can be understood as the invariance under supersymmetry of a variant supergravity.
In light of the strong advances in understanding the mathematical structure of scattering amplitudes, we discuss the Regge limit of QCD and of the ${cal N}=4$ Super Yang-Mills theory.
We revisit quantum field theory anomalies, emphasizing the interplay with diffeomorphisms and supersymmetry. The Ward identities of the latter induce Noether currents of all continuous symmetries, and we point out how these consistent currents are replaced by their covariant form through the appearance of the Bardeen-Zumino currents, which play a central role in our study. For supersymmetry Ward identities, two systematic methods for solving the Wess-Zumino consistency conditions are discussed: anomaly inflow and anomaly descent. The simplest inflows are from supersymmetric Chern-Simons actions in one dimension higher, which are used to supersymmetrize flavor anomalies in $d=4$ and, for $d=2$ $mathcal{N}=(p,q)$, flavor anomalies with $p,qleq 3$ and Lorentz-Weyl anomalies with $p,qleq 6$. Finally, we extend the BRST algebra and the subsequent descent, a necessity for the diffeomorphism anomaly in retrospect. The same modification computes the supersymmetrized anomalies, and determines the above Chern-Simons actions when these exist.
Using a recent understanding of mass generation for Yang-Mills theory and a quartic massless scalar field theory mapping each other, we show that when such a scalar field theory is coupled to a gauge field and Dirac spinors, all fields become massive at a classical level with all the properties of supersymmetry fulfilled, when the self-interaction of the scalar field is taken infinitely large. Assuming that the mechanism for mass generation must be the same in QCD as in the Standard Model, this implies that Higgs particle must be supersymmetric.
I stress how the form of sigma models with (2, 2) supersymmetry differs depending on the number of manifest supersymmetries. The differences correspond to different aspects/formulations of Generalized Kahler Geometry.
We show that the complex cohomologies of Bott, Chern, and Aeppli and the symplectic cohomologies of Tseng and Yau arise in the context of type II string theory. Specifically, they can be used to count a subset of scalar moduli fields in Minkowski compactification with RR fluxes in the presence of either O5/D5 or O6/D6 brane sources, respectively. Further, we introduce a new set of cohomologies within the generalized complex geometry framework which interpolate between these known complex and symplectic cohomologies. The generalized complex cohomologies play the analogous role for counting massless fields for a general supersymmetric Minkowski type II compactification with Ramond-Ramond flux.