In this paper we present an upper bound for the decay of correlation for the stationary stochastic process associated with the Entropy Penalized Method. Let $L(x, v):Tt^ntimesRr^nto Rr$ be a Lagrangian of the form L(x,v) = {1/2}|v|^2 - U(x) + < P, v>. For each value of $epsilon $ and $h$, consider the operator Gg[phi](x):= -epsilon h {ln}[int_{re^N} e ^{-frac{hL(x,v)+phi(x+hv)}{epsilon h}}dv], as well as the reversed operator bar Gg[phi](x):= -epsilon h {ln}[int_{re^N} e^{-frac{hL(x+hv,-v)+phi(x+hv)}{epsilon h}}dv], both acting on continuous functions $phi:Tt^nto Rr$. Denote by $phi_{epsilon,h} $ the solution of $Gg[phi_{epsilon,h}]=phi_{epsilon,h}+lambda_{epsilon,h}$, and by $bar phi_{epsilon,h} $ the solution of $bar Gg[phi_{epsilon,h}]=bar phi_{epsilon,h}+lambda_{epsilon,h}$. In order to analyze the decay of correlation for this process we show that the operator $ {cal L} (phi) (x) = int e^{- frac{h L (x,v)}{epsilon}} phi(x+h v) d v,$ has a maximal eigenvalue isolated from the rest of the spectrum.