We use a recently proved fluctuation theorem for the currents to develop the response theory of nonequilibrium phenomena. In this framework, expressions for the response coefficients of the currents at arbitrary orders in the thermodynamic forces or affinities are obtained in terms of the fluctuations of the cumulative currents and remarkable relations are obtained which are the consequences of microreversibility beyond Onsager reciprocity relations.
We present a stochastic approach for ion transport at the mesoscopic level. The description takes into account the self-consistent electric field generated by the fixed and mobile charges as well as the discrete nature of these latter. As an application we study the noise in the ion transport process, including the effect of the displacement current generated by the fluctuating electric field. The fluctuation theorem is shown to hold for the electric current with and without the displacement current.
We introduce a simple prescription for calculating the spectra of thermal fluctuations of temperature-dependent quantities of the form $hat{delta T}(t)=int d^3vec{r} delta T(vec{r},t) q(vec{r})$. Here $T(vec{r}, t)$ is the local temperature at location $vec{r}$ and time $t$, and $q(vec{r})$ is an arbitrary function. As an example of a possible application, we compute the spectrum of thermo-refractive coating noise in LIGO, and find a complete agreement with the previous calculation of Braginsky, Gorodetsky and Vyatchanin. Our method has computational advantage, especially for non-regular or non-symmetric geometries, and for the cases where $q(vec{r})$ is non-negligible in a significant fraction of the total volume.
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sasa formulation [Phys. Rev. Lett. 95, 130602 (2005)], obtained for Langevin equations in steady states, as it also holds for transient regimes and for discrete jump processes involving small entropic changes. Moreover, a general formulation includes two times and the new concepts of two-time work, kinetic energy, and of a two-time heat exchange that can be related to a nonequilibrium effective temperature. Numerical simulations of a chain of anharmonic oscillators and of a model for a molecular motor driven by ATP hydrolysis illustrate these points.
The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter.By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear response regime, the theorem interrelates the spontaneous fluctuations of microscopic variables with the kinetic coefficients that are responsible for energy dissipation.In the quantum form provided by Callen and Welton in their pioneer paper of 1951 for the case of conductors, electrical noise detected at the terminals of a conductor was given in terms of the spectral density of voltage fluctuations, $S_V({omega})$, and was related to the real part of its impedance, $Re[Z({omega})]$, by a simple relation.The drawbacks of this relation concern with: (I) the appearance of a zero point contribution which implies a divergence of the spectrum at increasing frequencies; (ii) the lack of detailing the appropriate equivalent-circuit of the impedance, (iii) the neglect of the Casimir effect associated with the quantum interaction between zero-point energy and boundaries of the considered physical system; (iv) the lack of identification of the microscopic noise sources beyond the temperature model. These drawbacks do not allow to validate the relation with experiments. By revisiting the FDT within a brief historical survey, we shed new light on the existing drawbacks by providing further properties of the theorem, focusing on the electrical noise of a two-terminal sample under equilibrium conditions. Accordingly, we will discuss the duality and reciprocity properties of the theorem, its applications to the ballistic transport regime, to the case of vacuum and to the case of a photon gas.
We characterize statistical properties of the flow field in developed turbulence using concepts from stochastic thermodynamics. On the basis of data from a free air-jet experiment, we demonstrate how the dynamic fluctuations induced by small-scale intermittency generate analogs of entropy-consuming trajectories with sufficient weight to make fluctuation theorems observable at the macroscopic scale. We propose an integral fluctuation theorem for the entropy production associated with the stochastic evolution of velocity increments along the eddy-hierarchy and demonstrate its extreme sensitivity to the accurate description of the tails of the velocity distributions.