Do you want to publish a course? Click here

Scanning magnetoresistance microscopy of atom chips

152   0   0.0 ( 0 )
 Added by Brenton Hall
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface based geometries of microfabricated wires or patterned magnetic films can be used to magnetically trap and manipulate ultracold neutral atoms or Bose-Einstein condensates. We investigate the magnetic properties of such atom chips using a scanning magnetoresistive (MR) microscope with high spatial resolution and high field sensitivity. We show that MR sensors are ideally suited to observe small variations of the magnetic field caused by imperfections in the wires or magnetic materials which ultimately lead to fragmentation of ultracold atom clouds. Measurements are also provided for the magnetic field produced by a thin current-carrying wire with small geometric modulations along the edge. Comparisons of our measurements with a full numeric calculation of the current flow in the wire and the subsequent magnetic field show excellent agreement. Our results highlight the use of scanning MR microscopy as a convenient and powerful technique for precisely characterizing the magnetic fields produced near the surface of atom chips.



rate research

Read More

123 - S. Eriksson 2005
We report on the integration of small-scale optical components into silicon wafers for use in atom chips. We present an on-chip fibre-optic atom detection scheme that can probe clouds with small atom numbers. The fibres can also be used to generate microscopic dipole traps. We describe our most recent results with optical microcavities and show that single-atom detection can be realised on an atom chip. The key components have been fabricated by etching directly into the atom chip silicon substrate.
We employ a combination of optical UV- and electron-beam-lithography to create an atom chip combining sub-micron wire structures with larger conventional wires on a single substrate. The new multi-layer fabrication enables crossed wire configurations, greatly enhancing the flexibility in designing potentials for ultra cold quantum gases and Bose-Einstein condensates. Large current densities of >6 x 10^7 A/cm^2 and high voltages of up to 65 V across 0.3 micron gaps are supported by even the smallest wire structures. We experimentally demonstrate the flexibility of the next generation atom chip by producing Bose-Einstein condensates in magnetic traps created by a combination of wires involving all different fabrication methods and structure sizes.
Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions.
Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.
In this review article, we describe the studies of 1D gases realised on atom-chip experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا