Do you want to publish a course? Click here

Star Formation and the Growth of Stellar Mass

144   0   0.0 ( 0 )
 Added by Eric F. Bell
 Publication date 2007
  fields Physics
and research's language is English
 Authors Eric F. Bell




Ask ChatGPT about the research

Recent observations have demonstrated a significant growth in the integrated stellar mass of the red sequence since z=1, dominated by a steadily increasing number of galaxies with stellar masses M* < 10^11 M_sun. In this paper, we use the COMBO-17 photometric redshift survey in conjunction with deep Spitzer 24 micron data to explore the relationship between star formation and the growth of stellar mass. We calculate `star formation rate functions in four different redshift slices, splitting also into contributions from the red sequence and blue cloud for the first time. We find that the growth of stellar mass since z=1 is consistent with the integrated star formation rate. Yet, most of the stars formed are in blue cloud galaxies. If the stellar mass already in, and formed in, z<1 blue cloud galaxies were to stay in the blue cloud the total stellar mass in blue galaxies would be dramatically overproduced. We explore the expected evolution of stellar mass functions, finding that in this picture the number of massive M* > 3x10^10 M_sun blue galaxies would also be overproduced; i.e., most of the new stars formed in blue cloud galaxies are in the massive galaxies. We explore a simple truncation scenario in which these `extra blue galaxies have their star formation suppressed by an unspecified mechanism or mechanisms; simple cessation of star formation in these extra blue galaxies is approximately sufficient to build up the red sequence at M*<10^11 M_sun.



rate research

Read More

We present evidence for stochastic star formation histories in low-mass (M* < 10^10 Msun) galaxies from observations within the Galaxy And Mass Assembly (GAMA) survey. For ~73,000 galaxies between 0.05<z<0.32, we calculate star formation rates (SFR) and specific star formation rates (SSFR = SFR/M*) from spectroscopic Halpha measurements and apply dust corrections derived from Balmer decrements. We find a dependence of SSFR on stellar mass, such that SSFRs decrease with increasing stellar mass for star-forming galaxies, and for the full sample, SSFRs decrease as a stronger function of stellar mass. We use simple parametrizations of exponentially declining star formation histories to investigate the dependence on stellar mass of the star formation timescale and the formation redshift. We find that parametrizations previously fit to samples of z~1 galaxies cannot recover the distributions of SSFRs and stellar masses observed in the GAMA sample between 0.05<z<0.32. In particular, a large number of low-mass (M* < 10^10 Msun) galaxies are observed to have much higher SSFRs than can be explained by these simple models over the redshift range of 0.05<z<0.32, even when invoking mass-dependent staged evolution. For such a large number of galaxies to maintain low stellar masses, yet harbour such high SSFRs, requires the late onset of a weak underlying exponentially declining SFH with stochastic bursts of star formation superimposed.
66 - Hidenobu Yajima 2017
We present the results of cosmological hydrodynamic simulations with zoom-in initial conditions, and investigate the formation of the first galaxies and their evolution towards observable galaxies at $z sim 6$. We focus on three different galaxies which end up in halos with masses $M_{h} = 2.4 times10^{10}~h^{-1}; M_{odot}$ (Halo-10), $1.6 times10^{11}~h^{-1}; M_{odot}$ (Halo-11) and $0.7 times10^{12}~h^{-1} M_{odot}$ (Halo-12) at z=6. Our simulations also probe impacts of different sub-grid assumptions, i.e., SF efficiency and cosmic reionization, on SF histories in the first galaxies. We find that star formation occurs intermittently due to supernova (SN) feedback at z > 10, and then it proceeds more smoothly as the halo mass grows at lower redshifts. Galactic disks are destroyed due to SN feedback, while galaxies in simulations with no-feedback or lower SF efficiency models can sustain galactic disk for long periods > 10 Myr. The expulsion of gas at the galactic center also affects the inner dark matter density profile. However, SN feedback does not seem to keep the shallow profile of dark matter for a long period. Our simulated galaxies in Halo-11 and Halo-12 reproduce the star formation rates (SFR) and stellar masses of observed Lyman-$alpha$ emitters (LAEs) at z = 7-8 fairly well given observational uncertainties. In addition, we investigate the effect of UV background radiation on star formation as an external feedback source, and find that earlier reionization extends the quenching time of star formation due to photo-ionization heating, but does not affect the stellar mass at z=6.
We present a compilation of measurements of the stellar mass density as a function of redshift. Using this stellar mass history we obtain a star formation history and compare it to the instantaneous star formation history. For z<0.7 there is good agreement between the two star formation histories. At higher redshifts the instantaneous indicators suggest star formation rates larger than that implied by the evolution of the stellar mass density. This discrepancy peaks at z=3 where instantaneous indicators suggest a star formation rate around 0.6 dex higher than those of the best fit to the stellar mass history. We discuss a variety of explanations for this inconsistency, such as inaccurate dust extinction corrections, incorrect measurements of stellar masses and a possible evolution of the stellar initial mass function.
The growth of galaxies is a key problem in understanding the structure and evolution of the universe. Galaxies grow their stellar mass by a combination of star formation and mergers, with a relative importance that is redshift dependent. Theoretical models predict quantitatively different contributions from the two channels; measuring these from the data is a crucial constraint. Exploiting the UltraVISTA catalog and a unique sample of progenitors of local ultra massive galaxies selected with an abundance matching approach, we quantify the role of the two mechanisms from z=2 to 0. We also compare our results to two independent incarnations of semi-analytic models. At all redshifts, progenitors are found in a variety of environments, ranging from being isolated to having 5-10 companions with mass ratio at least 1:10 within a projected radius of 500 kpc. In models, progenitors have a systematically larger number of companions, entailing a larger mass growth for mergers than in observations, at all redshifts. Generally, in both observations and models, the inferred and the expected mass growth roughly agree, within the uncertainties. Overall, our analysis confirms the model predictions, showing how the growth history of massive galaxies is dominated by in situ star formation at z~2, both star-formation and mergers at 1<z<2, and by mergers alone at z<1. Nonetheless, detailed comparisons still point out to tensions between the expected mass growth and our results, which might be due to either an incorrect progenitors-descendants selection, uncertainties on star formation rate and mass estimates, or the adopted assumptions on merger rates.
400 - Xian Zhong Zheng 2007
We combine Spitzer 24micron observations with data from the COMBO-17 survey for ~15,000 0.2<z<1 galaxies to determine how the average star formation rates (SFR) have evolved for galaxy sub-populations of different stellar masses. In the determination of <SFR> we consider both the ultraviolet (UV) and the infrared (IR) luminosities, and account for the contributions of galaxies that are individually undetected at 24micron through image stacking. For all redshifts we find that higher-mass galaxies have substantially lower specific SFR, <SFR>/<M*>, than lower-mass ones. However, we find the striking result that the rate of decline in cosmic SFR with redshift is nearly the same for massive and low-mass galaxies, i.e. NOT a strong function of stellar mass. This analysis confirms one version of what has been referred to as `downsizing, namely that the epoch of major mass build-up in massive galaxies is substantially earlier than the epoch of mass build-up in low-mass galaxies. Yet it shows that star formation activity is NOT becoming increasingly limited to low-mass galaxies towards the present epoch. We argue that this suggests that heating by AGN-powered radio jets is not the dominant mechanism responsible for the decline in cosmic SFR since z~1, which is borne out by comparison with semi-analytic models that include this effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا