Electron-electron correlation in graphite


Abstract in English

The full three dimensional dispersion of the pi-bands, Fermi velocities and effective masses are measured with angle resolved photoemission spectroscopy and compared to first-principles calculations. The band structure by density-functional theory strongly underestimates the slope of the bands and the trigonal warping effect. Including electron-electron calculation on the level of the GW approximation, however, yields remarkable agreement in the vicinity of the Fermi level. This demonstrates the breakdown of the independent electron picture in semi-metallic graphite and points towards a pronounced role of electron correlation for the interpretation of transport experiments and double-resonant Raman scattering for a wide range of carbon based materials.

Download