Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 micron Calibration


Abstract in English

We present the stellar calibrator sample and the conversion from instrumental to physical units for the 24 micron channel of the Multiband Imaging Photometer for Spitzer (MIPS). The primary calibrators are A stars, and the calibration factor based on those stars is 4.54*10^{-2} MJy sr^{-1} (DN/s)^{-1}, with a nominal uncertainty of 2%. We discuss the data-reduction procedures required to attain this accuracy; without these procdures, the calibration factor obtained using the automated pipeline at the Spitzer Science Center is 1.6% +/- 0.6% lower. We extend this work to predict 24 micron flux densities for a sample of 238 stars which covers a larger range of flux densities and spectral types. We present a total of 348 measurements of 141 stars at 24 micron. This sample covers a factor of ~460 in 24 micron flux density, from 8.6 mJy up to 4.0 Jy. We show that the calibration is linear over that range with respect to target flux and background level. The calibration is based on observations made using 3-second exposures; a preliminary analysis shows that the calibration factor may be 1% and 2% lower for 10- and 30-second exposures, respectively. We also demonstrate that the calibration is very stable: over the course of the mission, repeated measurements of our routine calibrator, HD 159330, show a root-mean-square scatter of only 0.4%. Finally, we show that the point spread function (PSF) is well measured and allows us to calibrate extended sources accurately; Infrared Astronomy Satellite (IRAS) and MIPS measurements of a sample of nearby galaxies are identical within the uncertainties.

Download