Energetics of positron states trapped at vacancies in solids


Abstract in English

We report a computational first-principles study of positron trapping at vacancy defects in metals and semiconductors. The main emphasis is on the energetics of the trapping process including the interplay between the positron state and the defects ionic structure and on the ensuing annihilation characteristics of the trapped state. For vacancies in covalent semiconductors the ion relaxation is a crucial part of the positron trapping process enabling the localization of the positron state. However, positron trapping does not strongly affect the characteristic features of the electronic structure, e.g., the ionization levels change only moderately. Also in the case of metal vacancies the positron-induced ion relaxation has a noticeable effect on the calculated positron lifetime and momentum distribution of annihilating electron-positron pairs.

Download