No Arabic abstract
We compute solutions of the Lagrangian-Averaged Navier-Stokes alpha-model (LANS) for significantly higher Reynolds numbers (up to Re 8300) than have previously been accomplished. This allows sufficient separation of scales to observe a Navier-Stokes (NS) inertial range followed by a 2nd LANS inertial range. The analysis of the third-order structure function scaling supports the predicted l^3 scaling; it corresponds to a k^(-1) scaling of the energy spectrum. The energy spectrum itself shows a different scaling which goes as k^1. This latter spectrum is consistent with the absence of stretching in the sub-filter scales due to the Taylor frozen-in hypothesis employed as a closure in the derivation of LANS. These two scalings are conjectured to coexist in different spatial portions of the flow. The l^3 (E(k) k^(-1)) scaling is subdominant to k^1 in the energy spectrum, but the l^3 scaling is responsible for the direct energy cascade, as no cascade can result from motions with no internal degrees of freedom. We verify the prediction for the size of the LANS attractor resulting from this scaling. From this, we give a methodology either for arriving at grid-independent solutions for LANS, or for obtaining a formulation of a LES optimal in the context of the alpha models. The fully converged grid-independent LANS may not be the best approximation to a direct numerical simulation of the NS equations since the minimum error is a balance between truncation errors and the approximation error due to using LANS instead of the primitive equations. Furthermore, the small-scale behavior of LANS contributes to a reduction of flux at constant energy, leading to a shallower energy spectrum for large alpha. These small-scale features, do not preclude LANS to reproduce correctly the intermittency properties of high Re flow.
Adjoint-based sensitivity analysis methods are powerful tools for engineers who use flow simulations for design. However, the conventional adjoint method breaks down for scale-resolving simulations like large-eddy simulation (LES) or direct numerical simulation (DNS), which exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional methods, but has a high computational cost. The following report outlines a new, more computationally efficient formulation of LSS, non-intrusive LSS, and estimates its cost for several canonical flows using Lyapunov analysis.
A phenomenological theory of the fluctuations of velocity occurring in a fully developed homogeneous and isotropic turbulent flow is presented. The focus is made on the fluctuations of the spatial (Eulerian) and temporal (Lagrangian) velocity increments. The universal nature of the intermittency phenomenon as observed in experimental measurements and numerical simulations is shown to be fully taken into account by the multiscale picture proposed by the multifractal formalism, and its extensions to the dissipative scales and to the Lagrangian framework. The article is devoted to the presentation of these arguments and to their comparisons against empirical data. In particular, explicit predictions of the statistics, such as probability density functions and high order moments, of the velocity gradients and acceleration are derived. In the Eulerian framework, at a given Reynolds number, they are shown to depend on a single parameter function called the singularity spectrum and to a universal constant governing the transition between the inertial and dissipative ranges. The Lagrangian singularity spectrum compares well with its Eulerian counterpart by a transformation based on incompressibility, homogeneity and isotropy and the remaining constant is shown to be difficult to estimate on empirical data. It is finally underlined the limitations of the increment to quantify accurately the singular nature of Lagrangian velocity. This is confirmed using higher order increments unbiased by the presence of linear trends, as they are observed on velocity along a trajectory.
Helicity, as one of only two inviscid invariants in three-dimensional turbulence, plays an important role in the generation and evolution of turbulence. From the traditional viewpoint, there exists only one channel of helicity cascade similar to that of kinetic energy cascade. Through theoretical analysis, we find that there are two channels in helicity cascade process. The first channel mainly originates from vortex twisting process, and the second channel mainly originates from vortex stretching process. By analysing the data of direct numerical simulations of typical turbulent flows, we find that these two channels behave differently. The ensemble averages of helicity flux in different channels are equal in homogeneous and isotropic turbulence, while they are different in other type of turbulent flows. The second channel is more intermittent and acts more like a scalar, especially on small scales. Besides, we find a novel mechanism of hindered even inverse energy cascade, which could be attributed to the second-channel helicity flux with large amplitude.
Axisymmetric fountains in stratified environments rise until reaching a maximum height, where the vertical momentum vanishes, and then falls and spread radially as an annular plume following a well-known top-hat profile. Here, firstly, we generalize the model of Morton et al. (Proc. R. Soc. Lond. A textbf{234}, 1, 1956), in order to correctly determine the dependence of the maximum height and the spreading height with the parameters involved. We obtain the critical conditions for the collapse of the fountain, textit i.e. when the jet falls up to the source level, and show that the spreading height must be expressed as a function of at least two parameters. To improve the quantitative agreement with the experiments we modify the criterion to take the mixing process in the down flow into account. Numerical simulations were implemented to estimate the parameter values that characterizes this merging. We show that our generalized model agrees very well with the experimental measurements.
An original experimental setup has been elaborated in order to get a better view of turbulent flows in a von Karman geometry. The availability of a very fast camera allowed to follow in time the evolution of the flows. A surprising finding is that the development of smaller whorls ceases earlier than expected and the aspect of the flows remains the same above Reynolds number of a few thousand. This fact provides an explanation of the constancy of the reduced dissipation in the same range without the need of singularity. Its cause could be in relation with the same type of behavior observed in a rotating frame.