No Arabic abstract
We present Spitzer IRS low resolution, mid-IR spectra of a sample of 25 high luminosity QSOs at 2<z<3.5. When combined with archival IRS observations of local, low luminosity type-I AGNs, the sample spans five orders of magnitude in luminosity. We find that the continuum dust thermal emission at lambda(rest)=6.7um is correlated with the optical luminosity, following the non-linear relation L(6.7um) propto L(5100A)^0.82. We also find an anti correlation between the ratio L(6.7um)/L(5100A) and the [OIII]5007A line luminosity. These effects are interpreted as a decreasing covering factor of the circumnuclear dust as a function of luminosity. Such a result is in agreement with the decreasing fraction of absorbed AGNs as a function of luminosity recently found in various surveys. We clearly detect the silicate emission feature in the average spectrum, but also in four individual objects. These are the Silicate emission in the most luminous objects obtained so far. When combined with the silicate emission observed in local, low luminosity type-I AGNs, we find that the silicate emission strength is correlated with luminosity. The silicate strength of all type-I AGNs also follows a positive correlation with the black hole mass and with the accretion rate. The Polycyclic Aromatic Hydrocarbon (PAH) emission features, expected from starburst activity, are not detected in the average spectrum of luminous, high-z QSOs. The upper limit inferred from the average spectrum points to a ratio between PAH luminosity and QSO optical luminosity significantly lower than observed in lower luminosity AGNs, implying that the correlation between star formation rate and AGN power saturates at high luminosities.
We analyse a comprehensive set of MIR/FIR observations of Stephans Quintet (SQ), taken with the Spitzer Space Observatory. Our study reveals the presence of a luminous (L_{IR}approx 4.6x10^43 erg/s) and extended component of infrared dust emission, not connected with the main bodies of the galaxies, but roughly coincident with the X-ray halo of the group. We fitted the inferred dust emission spectral energy distribution of this extended source and the other main infrared emission components of SQ, including the intergalactic shock, to elucidate the mechanisms powering the dust and PAH emission, taking into account collisional heating by the plasma and heating through UV and optical photons. Combining the inferred direct and dust-processed UV emission to estimate the star formation rate (SFR) for each source we obtain a total SFR for SQ of 7.5 M(sun)/yr, similar to that expected for non-interacting galaxies with stellar mass comparable to the SQ galaxies. Although star formation in SQ is mainly occurring at, or external to the periphery of the galaxies, the relation of SFR per unit physical area to gas column density for the brightest sources is similar to that seen for star-formation regions in galactic disks. We also show that available sources of dust in the group halo can provide enough dust to produce up to L_{IR}approx 10^42 erg/s powered by collisional heating. Though a minority of the total infrared emission (which we infer to trace distributed star-formation), this is several times higher than the X-ray luminosity of the halo, so could indicate an important cooling mechanism for the hot IGM and account for the overall correspondence between FIR and X-ray emission.
We describe ISO observations of the obscured Asymptotic Giant Branch (AGB) star IRAS04496-6958 in the Large Magellanic Cloud (LMC). This star has been classified as a carbon star. Our new ISOCAM CVF spectra show that it is the first carbon star with silicate dust known outside of the Milky Way. The existence of this object, and the fact that it is one of the highest luminosity AGB stars in the LMC, provide important information for theoretical models of AGB evolution and understanding the origin of silicate carbon stars.
We present detections of emission at 250 GHz (1.2 mm) from two high redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30m telescope. The sources are SDSSp 015048.83+004126.2 at z = 3.7, and SDSSp J033829.31+002156.3 at z = 5.0, which is the third highest redshift QSO known, and the highest redshift mm emitting source yet identified. We also present deep radio continuum imaging of these two sources at 1.4 GHz using the Very Large Array. The combination of cm and mm observations indicate that the 250 GHz emission is most likely thermal dust emission, with implied dust masses of 1e8 M_solar. We consider possible dust heating mechanisms, including UV emission from the active nucleus (AGN), and a massive starburst concurrent with the AGN, with implied star formation rates > 1e3 M_solar/year.
Silicate carbon stars show the 10 micron silicate emission, despite their carbon-rich photospheres. They are considered to have circumbinary or circum-companion disks, which serve as a reservoir of oxygen-rich material shed by mass loss in the past. We present N-band spectro-interferometric observations of the silicate carbon star BM Gem using MIDI at the Very Large Telescope Interferometer (VLTI). Our aim is to probe the spatial distribution of oxygen-rich dust with high spatial resolution. BM Gem was observed with VLTI/MIDI at 44--62 m baselines using the UT2-UT3 and UT3-UT4 baseline configurations. The N-band visibilities observed for BM Gem show a steep decrease from 8 to ~10 micron and a gradual increase longward of ~10 micron, reflecting the optically thin silicate emission feature emanating from sub-micron-sized amorphous silicate grains. The differential phases obtained at baselines of ~44--46 m show significant non-zero values (~ -70 degrees) in the central part of the silicate emission feature between ~9 and 11 micron, revealing a photocenter shift and the asymmetric nature of the silicate emitting region. The observed N-band visibilities and differential phases can be fairly explained by a simple geometrical model in which the unresolved star is surrounded by a ring with azimuthal brightness modulation. The best-fit model is characterized by a broad ring (~70 mas across at 10 micron) with a bright region which is offset from the unresolved star by ~20 mas at a position angle of ~280 degrees. This model can be interpreted as a system with a circum-companion disk and is consistent with the spectroscopic signatures of an accretion disk around an unseen companion recently discovered in the violet spectrum of BM Gem.
We present infrared multi-epoch observations of the dust forming nova V1280 Sco over $sim$2000 days from the outburst. The temporal evolution of the infrared spectral energy distributions at 1272, 1616 and 1947 days can be explained by the emissions produced by amorphous carbon dust of mass (6.6--8.7)$times$10$^{-8}$M$_{odot}$ with a representative grain size of 0.01$~mu$m and astronomical silicate dust of mass (3.4--4.3)$times$10$^{-7}$M$_{odot}$ with a representative grain size of 0.3--0.5$~mu$m. Both of these dust species travel farther away from the white dwarf without an apparent mass evolution throughout those later epochs. The dust formation scenario around V1280 Sco suggested from our analyses is that the amorphous carbon dust is formed in the nova ejecta followed by the formation of silicate dust in the expanding nova ejecta or as a result of the interaction between the nova wind and the circumstellar medium.