No Arabic abstract
A new public conveyance model applicable to buses and trains is proposed in this paper by using stochastic cellular automaton. We have found the optimal density of vehicles, at which the average velocity becomes maximum, significantly depends on the number of stops and passengers behavior of getting on a vehicle at stops. The efficiency of the hail-and-ride system is also discussed by comparing the different behavior of passengers. Moreover, we have found that a big cluster of vehicles is divided into small clusters, by incorporating information of the number of vehicles between successive stops.
Uncoordinated individuals in human society pursuing their personally optimal strategies do not always achieve the social optimum, the most beneficial state to the society as a whole. Instead, strategies form Nash equilibria which are often socially suboptimal. Society, therefore, has to pay a price of anarchy for the lack of coordination among its members. Here we assess this price of anarchy by analyzing the travel times in road networks of several major cities. Our simulation shows that uncoordinated drivers possibly waste a considerable amount of their travel time. Counterintuitively,simply blocking certain streets can partially improve the traffic conditions. We analyze various complex networks and discuss the possibility of similar paradoxes in physics.
Using parallels with the quantum scattering theory, developed for processes in nuclear and mesoscopic physics and quantum chaos, we construct a reduced Google matrix $G_R$ which describes the properties and interactions of a certain subset of selected nodes belonging to a much larger directed network. The matrix $G_R$ takes into account effective interactions between subset nodes by all their indirect links via the whole network. We argue that this approach gives new possibilities to analyze effective interactions in a group of nodes embedded in a large directed networks. Possible efficient numerical methods for the practical computation of $G_R$ are also described.
The goals of this paper are to present criteria, that allow to a priori quantify the attack stability of real world correlated networks of finite size and to check how these criteria correspond to analytic results available for infinite uncorrelated networks. As a case study, we consider public transportation networks (PTN) of several major cities of the world. To analyze their resilience against attacks either the network nodes or edges are removed in specific sequences (attack scenarios). During each scenario the size S(c) of the largest remaining network component is observed as function of the removed share c of nodes or edges. To quantify the PTN stability with respect to different attack scenarios we use the area below the curve described by S(c) for c in [0,1] recently introduced (Schneider, C. M, et al., PNAS 108 (2011) 3838) as a numerical measure of network robustness. This measure captures the network reaction over the whole attack sequence. We present results of the analysis of PTN stability against node and link-targeted attacks.
We consider the exclusion process on a ring with time-dependent defective bonds at which the hoping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.
In this paper we aim to demonstrate how physical perspective enriches usual statistical analysis when dealing with a complex system of many interacting agents of non-physical origin. To this end, we discuss analysis of urban public transportation networks viewed as complex systems. In such studies, a multi-disciplinary approach is applied by integrating methods in both data processing and statistical physics to investigate the correlation between public transportation network topological features and their operational stability. The studies incorporate concepts of coarse graining and clusterization, universality and scaling, stability and percolation behavior, diffusion and fractal analysis.