Do you want to publish a course? Click here

Identifying Dark Matter Burners in the Galactic center

323   0   0.0 ( 0 )
 Added by Igor Moskalenko
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

If the supermassive black hole (SMBH) at the center of our Galaxy grew adiabatically, then a dense spike of dark matter is expected to have formed around it. Assuming that dark matter is composed primarily of weakly interacting massive particles (WIMPs), a star orbiting close enough to the SMBH can capture WIMPs at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, i.e. WIMP burners, in the vicinity of an adiabatically grown SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WD) or degenerate cores with envelopes. If found, such stars would provide evidence for the existence of particle dark matter and could possibly be used to establish its density profile. In our previous paper we computed the luminosity from WIMP burning for a range of dark matter spike density profiles, degenerate core masses, and distances from the SMBH. Here we compare our results with the observed stars closest to the Galactic center and find that they could be consistent with WIMP burners in the form of degenerate cores with envelopes. We also cross-check the WIMP burner hypothesis with the EGRET observed flux of gamma-rays from the Galactic center, which imposes a constraint on the dark matter spike density profile and annihilation cross-section. We find that the EGRET data is consistent with the WIMP burner hypothesis. New high precision measurements by GLAST will confirm or set stringent limits on a dark matter spike at the Galactic center, which will in turn support or set stringent limits on the existence of WIMP burners at the Galactic center.



rate research

Read More

We show that a star orbiting close enough to an adiabatically grown supermassive black hole (SMBH) can capture weakly interacting massive particles (WIMPs) at an extremely high rate. The stellar luminosity due to annihilation of captured WIMPs in the stellar core may be comparable to or even exceed the luminosity of the star due to thermonuclear burning. The model thus predicts the existence of unusual stars, essentially WIMP burners, in the vicinity of a SMBH. We find that the most efficient WIMP burners are stars with degenerate electron cores, e.g. white dwarfs (WDs); such WDs may have a very high surface temperature. If found, such stars would provide evidence for the existence of particle dark matter and can possibly be used to establish its density profile. On the other hand, the lack of such unusual stars may provide constraints on the WIMP density near the SMBH, as well as the WIMP-nucleus scattering and pair annihilation cross-sections.
The gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source is well fitted by the secondary photons coming from Dark Matter (DM) annihilation in particle-antiparticle standard model pairs over a diffuse power-law background. The spectral features of the signal are consistent with different channels: light quarks, electro-weak gauge bosons and top-antitop production. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer large enhancements in the signal over DM alone simulations. The fits return a heavy WIMP, with a mass above 10 TeV, but well below the unitarity limit for thermal relic annihilation. The fitted background spectral index is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. This possibility can be potentially tested with the observations of other high energy cosmic rays.
It is shown that the matter concentration observed through stellar motion at the galactic center (Eckart & Genzel, 1997, MNRAS, 284, 576 and Genzel et al., 1996, ApJ, 472, 153) is consistent with a supermassive object of $2.5 times 10^6$ solar masses composed of self-gravitating, degenerate heavy neutrinos, as an alternative to the black hole interpretation. According to the observational data, the lower bounds on possible neutrino masses are $m_ u geq 12.0$ keV$/c^2$ for $g=2$ or $m_ u geq 14.3$ keV$/c^2$ for $g=1$, where $g$ is the spin degeneracy factor. The advantage of this scenario is that it could naturally explain the low X-ray and gamma ray activity of Sgr A$^*$, i.e. the so called blackness problem of the galactic center.
An excess of $gamma$ rays in the data measured by the Fermi Large Area Telescope in the direction of the Galactic center has been reported in several publications. This excess, labeled as the Galactic center excess (GCE), is detected analyzing the data with different interstellar emission models, point source catalogs and analysis techniques. The characteristics of the GCE, recently measured with unprecedented precision, are all compatible with dark matter particles (DM) annihilating in the main halo of our Galaxy, even if other interpretations are still not excluded. We investigate the DM candidates that fit the observed GCE spectrum and spatial morphology. We assume a simple scenario with DM annihilating into a single channel but we inspect also more complicated models with two and three channels. We perform a search for a $gamma$-ray flux from a list of 48 Milky Way dwarf spheroidal galaxies (dSphs) using state-of-the-art estimation of the DM density in these objects. Since we do not find any significant signal from the dSphs, we put upper limits on the annihilation cross section that result to be compatible with the DM candidate that fits the GCE. However, we find that the GCE DM signal is excluded by the AMS-02 $bar{p}$ flux data for all hadronic and semi-hadronic annihilation channels unless the vertical size of the diffusion halo is smaller than 2 kpc -- which is in tension with radioactive cosmic ray fluxes and radio data. Furthermore, AMS-02 $e^+$ data rule out pure or mixed channels with a component of $e^+ e^-$. The only DM candidate that fits the GCE spectrum and is compatible with constraints obtained with the combined dSphs analysis and the AMS-02 $bar{p}$ and $e^+$ data annihilates purely into $mu^+mu^-$, has a mass of 60 GeV and roughly a thermal cross section.
A search for a very-high-energy (VHE; >= 100 GeV) gamma-ray signal from self-annihilating particle Dark Matter (DM) is performed towards a region of projected distance r ~ 45-150 pc from the Galactic Center. The background-subtracted gamma-ray spectrum measured with the High Energy Stereoscopic System (H.E.S.S.) gamma-ray instrument in the energy range between 300 GeV and 30 TeV shows no hint of a residual gamma-ray flux. Assuming conventional Navarro-Frenk-White (NFW) and Einasto density profiles, limits are derived on the velocity-weighted annihilation cross section < sigma v> as a function of the DM particle mass. These are among the best reported so far for this energy range. In particular, for the DM particle mass of ~1 TeV, values for <sigma v> above 3 * 10^(-25) cm^3 s^(-1) are excluded for the Einasto density profile. The limits derived here differ much less for the chosen density profile parametrizations, as opposed to limits from gamma-ray observations of dwarf galaxies or the very center of the Milky Way, where the discrepancy is significantly larger.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا