Do you want to publish a course? Click here

SUBARU HDS Observations of a Balmer-Dominated Shock in Tychos Supernova Remnant

169   0   0.0 ( 0 )
 Added by Jae-Joon Lee
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an Ha spectral observation of a Balmer-dominated shock on the eastern side of Tychos supernova remnant using the Subaru Telescope. Utilizing the High Dispersion Spectrograph (HDS), we measure the spatial variation of the line profile between preshock and postshock gas. Our observation clearly shows a broadening and centroid shift of the narrow-component postshock Ha line relative to the Ha emission from the preshock gas. The observation supports the existence of a thin precursor where gas is heated and accelerated ahead of the shock. Furthermore, the spatial profile of the emission ahead of the Balmer filament shows a gradual gradient in the Ha intensity and line width ahead of the shock. We propose that this region (~10^16 cm) is likely to be the spatially resolved precursor. The line width increases from ~30 up to ~45 km/s, and its central velocity shows a redshift of ~5 km/s across the shock front. The characteristics of the precursor are consistent with a cosmic-ray precursor, although the possibility of a fast neutral precursor is not ruled out.



rate research

Read More

We present a time-dependent cosmic-ray modified shock model for which the calculated H-alpha emissivity profile agrees well with the H-alpha flux increase ahead of the Balmer-dominated shock at knot g in Tychos supernova remnant, observed by Lee et al (2007). The backreaction of the cosmic ray component on the thermal component is treated in the two-fluid approximation, and we include thermal particle injection and energy transfer due to the acoustic instability in the precursor. The transient state of our model that describes the current state of the shock at knot g, occurs during the evolution from a thermal gas dominated shock to a smooth cosmic-ray dominated shock. Assuming a distance of 2.3 kpc to Tychos remnant we obtain values for the cosmic ray diffusion coefficient, the injection parameter, and the time scale for the energy transfer of 10^{24} cm^{2} s^{-1}, 4.2x10^{-3}, and 426 y, respectively. We have also studied the parameter space for fast (300 km s^{-1} - 3000 km s^{-1}), time-asymptotically steady shocks and have identified a branch of solutions, for which the temperature in the cosmic ray precursor typically reaches 2-6x10^{4} K and the bulk acceleration of the flow through the precursor is less than 10 km s^{-1}. These solutions fall into the low cosmic ray acceleration efficiency regime and are relatively insensitive to shock parameters. This low cosmic ray acceleration efficiency branch of solutions may provide a natural explanation for the line broadening of the H-alpha narrow component observed in non-radiative shocks in many supernova remnants.
We report on the results from H{alpha} imaging observations of the eastern limb of Tychos supernova remnant (SN1572) using the Wide Field Planetary Camera 2 on the Hubble Space Telescope. We resolve the detailed structure of the fast, collisionless shock wave into a delicate structure of nearly edge-on filaments. We find a gradual increase of H{alpha} intensity just ahead of the shock front, which we interpret as emission from the thin (~1) shock precursor. We find that a significant amount of the H{alpha} emission comes from the precursor and that this could affect the amount of temperature equilibration derived from the observed flux ratio of the broad and narrow H{alpha} components. The observed H{alpha} emission profiles are fit using simple precursor models, and we discuss the relevant parameters. We suggest that the precursor is likely due to cosmic rays and discuss the efficiency of cosmic-ray acceleration at this position.
Tychos supernova remnant was observed by the XIS and HXD instruments onboard the Suzaku satellite on 2006 June 26-29 for 92 ks. The spectrum up to 30 keV was well fitted with a two-component model, consisting of a power-law with photon index of 2.7 and a thermal bremsstrahlung model with temperature of 4.7 keV. The former component can alternatively be modeled as synchrotron emission from a population of relativistic electrons with an estimated roll-off energy of around 1 keV. In the XIS spectra, in addition to the prominent Fe K_alpha line (6.445 keV), we observe for the first time significant K_alpha line emission from the trace species Cr and Mn at energies of 5.48 keV and 5.95 keV, respectively. Faint K_beta lines from Ca (4.56 keV) and Fe (7.11 keV) are also seen. The ionization states of Cr and Mn, based on their line centroids, are estimated to be similar to that of Fe K_alpha (Fe XV or XVI).
We present results from {it XMM-Newton/RGS} observations of prominent knots in the southest portion of Tychos supernova remnant, known to be the remnant of a Type Ia SN in 1572 C.E. By dispersing the photons from these knots out of the remnant with very little emission in front of or behind them, we obtained the nearly uncontaminated spectra of the knots. In the southernmost knot, the RGS successfully resolved numerous emission lines from Si, Ne, O He$alpha$ and Ly$alpha$, and Fe L-shell. This is the first clear detection of O lines in Tychos SNR. Line broadening was measured to be $sim 3$ eV for the O He$alpha$ and $sim 4.5$ eV for Fe L lines. If we attribute the broadening to pure thermal Doppler effects, then we obtain kT$_{O}$ and kT$_{Fe}$ to be $sim 400$ keV and 1.5 MeV, respectively. These temperatures can be explained by heating in a reverse shock with a shock velocity of $sim 3500$ km s$^{-1}$. The abundances obtained from fitting the RGS and MOS data together imply substantially elevated amounts of these materials, confirming previous studies that the knots are heated by a reverse shock, and thus contain ejecta material from the supernova. We are unable to find a Type Ia explosion model that reproduces these abundances, but this is likely the result of this knot being too small to extrapolate to the entire remnant.
Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of nonthermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H$alpha$ emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine-Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy loss rate leads to more highly polarized H$alpha$ emission. Furthermore, we find that polarized intensity ratio of H$beta$ to H$alpha$ also depends on the energy loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا