The Schrodinger motion of a charged quantum particle in an electromagnetic potential can be simulated by the paraxial dynamics of photons propagating through a spatially inhomogeneous medium. The inhomogeneity induces geometric effects that generate an artificial vector potential to which signal photons are coupled. This phenomenon can be implemented with slow light propagating through an a gas of double-Lambda atoms in an electromagnetically-induced transparency setting with spatially varied control fields. It can lead to a reduced dispersion of signal photons and a topological phase shift of Aharonov-Bohm type.