The Schrodinger motion of a charged quantum particle in an electromagnetic potential can be simulated by the paraxial dynamics of photons propagating through a spatially inhomogeneous medium. The inhomogeneity induces geometric effects that generate an artificial vector potential to which signal photons are coupled. This phenomenon can be implemented with slow light propagating through an a gas of double-Lambda atoms in an electromagnetically-induced transparency setting with spatially varied control fields. It can lead to a reduced dispersion of signal photons and a topological phase shift of Aharonov-Bohm type.
In the paper, we show that there exists a close analogy between the behavior of de Broglie matter waves and that of electromagnetic waves inside a hollow waveguide, such that the guided photons can be treated as free massive particles subject to a relativistic quantum-mechanical equation. Inspired by the effective rest mass of guided photons and the zitterbewegung phenomenon of the Dirac electron, at variance with the well-known Higgs mechanism we present some different heuristic ideas on the origin of mass.
We study theoretically the possibilities of coupling the quantum mechanical motion of a trapped charged particle (e.g. ion or electron) to quantum degrees of freedom of superconducting devices, nano-mechanical resonators and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e. the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples, using parameters that are experimentally attainable in the foreseeable future. We conclude that those hybrid quantum system considered involving an atomic ion are unfavorable, compared to using an electron, since the coupling rates between the charged particle and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates which significantly exceed decoherence rates. Moreover it might have appealing properties such as fast entangling gates, long coherence and flexible electron interconnectivity topology. Realizing such a system, however, is technologically challenging, since it requires accommodating both trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry and cooling schemes in order to promote further investigations towards the realization of such a hybrid system.
We present two novel schemes to generate photon polarization entanglement via single electron spins confined in charged quantum dots inside microcavities. One scheme is via entangled remote electron spins followed by negatively-charged exciton emissions, and another scheme is via a single electron spin followed by the spin state measurement. Both schemes are based on giant circular birefringence and giant Faraday rotation induced by a single electron spin in a microcavity. Our schemes are deterministic and can generate an arbitrary amount of multi-photon entanglement. Following similar procedures, a scheme for a photon-spin quantum interface is proposed.
A higher-order dispersive equation is introduced as a candidate for the governing equation of a field theory. A new class of solutions of the three-dimensional field equation are considered, which are not localized functions in the sense of the integrability of the square of the profile over an infinite domain. For this new class of solutions, the gradient and/or the Hessian/Laplacian are square integrable. In the linear limiting case, an analytical expression for the pseudolocalized solution is found and the method of variational approximation is applied to find the dynamics of the centers of the quasi-particles (QPs) corresponding to these solutions. A discrete Lagrangian can be derived due to the localization of the gradient and the Laplacian of the profile. The equations of motion of the QPs are derived from the discrete Lagrangian. The pseudomass (wave mass) of a QP is defined as well as the potential of interaction. The most important trait of the new QPs is that at large distances, the force of attraction is proportional to the inverse square of the distance between the QPs. This can be considered analogous to the gravitational force in classical mechanics.
A superconducting qubit device suitable for interacting with a flying electron has recently been proposed [H. Okamoto and Y. Nagatani, Appl. Phys. Lett. textbf{104}, 062604 (2014)]. Either a clockwise or counter clockwise directed loop of half magnetic flux quantum encodes a qubit, which naturally interacts with any single charged particle with arbitrary kinetic energy. Here, the devices properties, sources of errors and possible applications are studied in detail. In particular, applications include detection of a charged particle without applying a force to it. Furthermore, quantum states can be transferred between an array of the proposed devices and the charged particle.