No Arabic abstract
We investigate the possibility of discriminating between Modified Newtonian Dynamics (MOND) and Newtonian gravity with dark matter, by studying the vertical dynamics of disk galaxies. We consider models with the same circular velocity in the equatorial plane (purely baryonic disks in MOND and the same disks in Newtonian gravity embedded in spherical dark matter haloes), and we construct their intrinsic and projected kinematical fields by solving the Jeans equations under the assumption of a two-integral distribution function. We found that the vertical velocity dispersion of deep-MOND disks can be much larger than in the equivalent spherical Newtonian models. However, in the more realistic case of high-surface density disks this effect is significantly reduced, casting doubts on the possibility of discriminating between MOND and Newtonian gravity with dark matter by using current observations.
We consider disk stability in the quasi-linear formulation of MOND (QUMOND), the basis for some $N$-body integrators. We generalize the Toomre criterion for the stability of disks to tightly wound, axisymmetric perturbations. We apply this to a family of thin exponential disks with different central surface densities. By numerically calculating their QUMOND rotation curves, we obtain the minimum radial velocity dispersion required for stability against local self-gravitating collapse. MOND correctly predicts much higher rotation speeds in low surface brightness galaxies (LSBs) than does Newtonian dynamics without dark matter. Newtonian models thus require putative very massive halos, whose inert nature implies they would strongly stabilize the disk. MOND also increases the stability of galactic disks, but in contradistinction to Newtonian gravity, this extra stability is limited to a factor of 2. MOND is thus rather more conducive to the formation of bars and spiral arms. Therefore, observation of such features in LSBs could be problematic for Newtonian galaxy models. This could constitute a crucial discriminating test. We quantitatively account for these facts in QUMOND. We also compare numerical QUMOND rotation curves of thin exponential disks to those predicted by two algebraic expressions commonly used to calculate MOND rotation curves. For the choice that best approximates QUMOND, we find the circular velocities agree to within 1.5% beyond $approx 0.5$ disk scale lengths, regardless of the central surface density. The other expression can underestimate the rotational speed by up to 12.5% at one scale length, though rather less so at larger radii.
We have carried out a search for gas-rich dwarf galaxies that have lower rotation velocities in their outskirts than MOdified Newtonian Dynamics (MOND) predicts, so that the amplitude of their rotation curves cannot be fitted by arbitrarily increasing the mass-to-light ratio of the stellar component or by assuming additional undetected matter. With presently available data, the gas-rich galaxies UGC 4173, Holmberg II, ESO 245-G05, NGC 4861 and ESO 364-G029 deviate most from MOND predictions and, thereby, provide a sample of promising targets in testing the MOND framework. In the case of Holmberg II and NGC 4861, we find that their rotation curves are probably inconsistent with MOND, unless their inclinations and distances differ significantly from the nominal ones. The galaxy ESO 364-G029 is a promising target because its baryonic mass and rotation curve are similar to Holmberg II but presents a higher inclination. Deeper photometric and HI observations of ESO 364-G029, together with further decreasing systematic uncertainties, may provide a strong test to MOND.
We compare N-body simulations performed in MOND with analogs in Newtonian gravity with dark matter (DM). We have developed a code which solves the Poisson equation in both gravity models. It is a grid solver using adaptive mesh refinement techniques, allowing us to study isolated galaxies as well as interacting galaxies. Galaxies in MOND are found to form bars faster and stronger than in the DM model. In Newton dynamics, it is difficult to reproduce the observed high frequency of strong bars, while MOND appears to fit better the observations. Galaxy interactions and mergers, such as the Antennae, are also simulated with Newton and MOND dynamics. In the latter, dynamical friction is much weaker, and merging time-scales are longer. The formation of tidal dwarf galaxies in tidal tails are also compared in MOND and Newton+DM models.
Since its publication 1983, Milgromian dynamics (aka MOND) has been very successful in modeling the gravitational potential of galaxies from baryonic matter alone. However, the dynamical modeling has long been an unsolved issue. In particular, the setup of a stable galaxy for Milgromian N-body calculations has been a major challenge. Here, we show a way to set up disc galaxies in MOND for calculations in the PHANTOM OF RAMSES (PoR) code by Lughausen (2015) and Teyssier (2002). The method is done by solving the QUMOND Poisson equations based on a baryonic and a phantom dark matter component. The resulting galaxy models are stable after a brief settling period for a large mass and size range. Simulations of single galaxies as well as colliding galaxies are shown.
We present a detailed analysis of the properties of warps and tidally-triggered perturbations perpendicular to the plane of 47 interacting/merging edge-on spiral galaxies. The derived parameters are compared with those obtained for a sample of 61 non-interacting edge-on spirals. The entire optical (R-band) sample used for this study was presented in two previous papers. We find that the scale height of disks in the interacting/merging sample is characterized by perturbations on both large (~disk cut-off radius) and short (~z0) scales, with amplitudes of the order of 280pc and 130pc on average, respectively. The size of these large (short) -scale instabilities corresponds to 14% (6%) of the mean disk scale height. This is a factor of 2 (1.5) larger than the value found for non-interacting galaxies. A hallmark of nearly all tidally distorted disks is a scale height that increases systematically with radial distance. The frequent occurrence and the significantly larger size of these gradients indicate that disk asymmetries on large scales are a common and persistent phenomenon, while local disturbances and bending instabilities decline on shorter timescales. Nearly all (93%) of the interacting/merging and 45% of the non-interacting galaxies studied are noticeably warped. Warps of interacting/merging galaxies are ~2.5 times larger on average than those observed in the non-interacting sample, with sizes of the order of 340pc and 140pc, respectively. This indicates that tidal distortions do considerably contribute to the formation and size of warps. However, they cannot entirely explain the frequent occurrence of warped disks.