Do you want to publish a course? Click here

The affine part of the Picard scheme

211   0   0.0 ( 0 )
 Added by Thomas Geisser H
 Publication date 2021
  fields
and research's language is English
 Authors T.Geisser




Ask ChatGPT about the research

We describe the maximal torus and maximal unipotent subgroup of the Picard variety of a proper scheme over a perfect field.



rate research

Read More

We compute the Picard group of the moduli stack of elliptic curves and its canonical compactification over general base schemes.
192 - Andrew Putman 2009
For $4 mid L$ and $g$ large, we calculate the integral Picard groups of the moduli spaces of curves and principally polarized abelian varieties with level $L$ structures. In particular, we determine the divisibility properties of the standard line bundles over these moduli spaces and we calculate the second integral cohomology group of the level $L$ subgroup of the mapping class group (in a previous paper, the author determined this rationally). This entails calculating the abelianization of the level $L$ subgroup of the mapping class group, generalizing previous results of Perron, Sato, and the author. Finally, along the way we calculate the first homology group of the mod $L$ symplectic group with coefficients in the adjoint representation.
We prove that if T is a theory of large, bounded, fields of characteristic zero, with almost quantifier elimination, and T_D is the model companion of T + D is a derivation, then for any model U of T_D, and differential subfield K of U whose field of constants is a model of T, and linear differential equation DY = AY over K, there is a Picard-Vessiot extension L of K for the equation which is embedded in U over K Likewise for logarithmic differential equations over K on connected algebraic groups over the constants of K and the corresponding strongly normal extensions of K.
93 - S. Paul Smith 2011
We compute the Grothendieck and Picard groups of a complete smooth toric Deligne-Mumford stack by using a suitable category of graded modules over a polynomial ring.
We report on $25$ families of projective Calabi-Yau threefolds that do not have a point of maximal unipotent monodromy in their moduli space. The construction is based on an analysis of certain pencils of octic arrangements that were found by C. Meyer. There are seven cases where the Picard-Fuchs operator is of order two and $18$ cases where it is of order four. The birational nature of the Picard-Fuchs operator can be used effectively to distinguish between families whose members have the same Hodge numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا