Do you want to publish a course? Click here

Probability distributions generated by fractional diffusion equations

232   0   0.0 ( 0 )
 Added by Francesco Mainardi
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fractional calculus allows one to generalize the linear, one-dimensional, diffusion equation by replacing either the first time derivative or the second space derivative by a derivative of fractional order. The fundamental solutions of these equations provide probability density functions, evolving on time or variable in space, which are related to the class of stable distributions. This property is a noteworthy generalization of what happens for the standard diffusion equation and can be relevant in treating financial and economical problems where the stable probability distributions play a key role.



rate research

Read More

70 - A. V. Chechkin 2002
We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equations and establish the relation to the Continuous Time Random Walk theory. We show that the distributed order time fractional diffusion equation describes the sub-diffusion random process which is subordinated to the Wiener process and whose diffusion exponent diminishes in time (retarding sub-diffusion) leading to superslow diffusion, for which the square displacement grows logarithmically in time. We also demonstrate that the distributed order space fractional diffusion equation describes super-diffusion phenomena when the diffusion exponent grows in time (accelerating super-diffusion).
Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations. As prototypes we study three variants of a generic time-fractional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super- and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation-dissipation relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work fluctuation relation, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work. We discuss possible applications of these types of dynamics and fluctuation relations to experiments.
In this paper we review some general properties of probability distributions which exibit a singular behavior. After introducing the matter with several examples based on various models of statistical mechanics, we discuss, with the help of such paradigms, the underlying mathematical mechanism producing the singularity and other topics such as the condensation of fluctuations, the relationships with ordinary phase-transitions, the giant response associated to anomalous fluctuations, and the interplay with Fluctuation Relations.
The article is devoted to the dynamics of systems with an anomalous scaling near a critical point. The fractional stochastic equation of a Lanvevin type with the $varphi^3$ nonlinearity is considered. By analogy with the model A the field theoretic model is built, and its propagators are calculated. The nonlocality of the new action functional in the coordinate representation is caused by the involving of the fractional spatial derivative. It is proved that the new model is multiplicatively renormalizable, the Gell-Man-Low function in the one-loop approximation is evaluted. The existence of the scaling behavior in the framework of the $varepsilon$-expansion for a superdiffusion is established.
We get fractional symmetric Fokker - Planck and Einstein - Smoluchowski kinetic equations, which describe evolution of the systems influenced by stochastic forces distributed with stable probability laws. These equations generalize known kinetic equations of the Brownian motion theory and contain symmetric fractional derivatives over velocity and space, respectively. With the help of these equations we study analytically the processes of linear relaxation in a force - free case and for linear oscillator. For a weakly damped oscillator we also get kinetic equation for the distribution in slow variables. Linear relaxation processes are also studied numerically by solving corresponding Langevin equations with the source which is a discrete - time approximation to a white Levy noise. Numerical and analytical results agree quantitatively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا