Do you want to publish a course? Click here

Modeling the Spectral Energy Distribution and Variability of 3C 66A during the WEBT campaign of 2003 -- 2004

129   0   0.0 ( 0 )
 Added by Manasvita Joshi
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The BL Lac object 3C 66A was observed in an extensive multiwavelength monitoring campaign from July 2003 till April 2004. The spectral energy distribution (SED) was measured over the entire electromagnetic spectrum, with flux measurements from radio to X-ray frequencies and upper limits in the very high energy (VHE) gamma-ray regime. Here, we use a time-dependent leptonic jet model to reproduce the SED and optical spectral variability observed during our multiwavelength campaign. Our model simulations could successfully reproduce the observed SED and optical light curves and predict an intrinsic cutoff value for the VHE gamma-ray emission at ~ 4 GeV. The effect of the optical depth due to the intergalactic infrared background radiation (IIBR) on the peak of the high-energy component of 3C 66A was found to be negligible. Also, the presence of a broad line region (BLR) in the case of 3C 66A may play an important role in the emission of gamma-ray photons when the emission region is very close to the central engine, but further out, the production mechanism of hard X-ray and gamma-ray photons becomes rapidly dominated by synchrotron self-Compton emission. We further discuss the possibility of an observable X-ray spectral variability pattern. The simulated results do not predict observable hysteresis patterns in the optical or soft X-ray regimes for major flares on multi-day time scales.



rate research

Read More

The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was R = 12.0, which represents the most luminous quasar state thus far observed (M_B ~ -31.4). In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm the
62 - U. Bach 2006
BL Lacertae has been the target of several observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration and is one of the best studied blazars at all accessible wavelengths. A recent analysis of the optical and radio variability indicates that part of the radio variability is correlated with the optical light curve. Here we present an analysis of a huge VLBI data set including 108 images at 15, 22, and 43 GHz obtained between 1995 and 2004. The aim of this study is to identify the different components contributing to the single-dish radio light curves. We obtain separate radio light curves for the VLBI core and jet and show that the radio spectral index of single-dish observations can be used to trace the core variability. Cross-correlation of the radio spectral index with the optical light curve indicates that the optical variations lead the radio by about 100 days at 15 GHz. By fitting the radio time lags vs. frequency, we find that the power law is steeper than expected for a freely expanding conical jet in equipartition with energy density decreasing as the square of the distance down the jet as in the Konigl model. There is a section of the compact radio jet where the emission is weak such that flares propagating down the jet are bright first in the core region with a secondary increase in flux about 1.0 mas from the core. This illustrates the importance of direct imaging to the interpretation of multi-wavelength light curves that can be affected by several distinct components at any given time. We discuss how the complex behaviour of the light curves and correlations can be understood within the framework of a precessing helical jet model.
We report the results of a 3-weeks multi-wavelength campaign on the flat spectrum radio quasar 3C 273 carried out with the AGILE gamma-ray mission, covering the 30 MeV -50 GeV and 18-60 keV, the REM observatory (covering the near-IR and optical), Swift (near-UV/Optical, 0.2-10 keV and 15-50 keV), INTEGRAL (3 - 200 keV) and Rossi XTE (2-12 keV). This is the first observational campaign including gamma-ray data, after the last EGRET observations, more than 8 years ago. Our study was carried out using simultaneous light curves of the source flux from all the involved instruments, in the different energy ranges, in search for correlated variability. Then a time-resolved SED was used for a detailed physical modelling of the emission mechanisms. The source was detected in gamma-rays only in the second week of our campaign. We found indication of a possible anti-correlation between the emission at gamma-rays and at soft and hard X-rays, supported by the complete set of instruments. Instead, optical data do not show short term variability. Only in two EGRET observations (in 1993 and 1997) 3C 273 showed intra-observation variability in gamma-rays. The SED with almost simultaneous data, partially covers the regions of the synchrotron emission, the big blue bump, and the inverse-Compton. The soft X-ray emission is consistent with combined SSC and EC mechanisms, while hard X and gamma-ray emissions are compatible with EC from thermal photons of the disk. The time evolution of the SED is well interpreted and modelled in terms of an acceleration episode of the electrons population, leading to a shift in the IC peak towards higher energies.
We present radio-to-optical data taken by the WEBT, supplemented by VLBA and RXTE observations, of 3C 279. Our goal is to use this extensive database to draw inferences regarding the physics of the relativistic jet. We assemble multifrequency light curves with data from 30 ground-based observatories and the space-based instruments, along with linear polarization vs. time in the optical R band. In addition, we present a sequence of 22 images (with polarization vectors) at 43 GHz at resolution 0.15 milliarcsec, obtained with the VLBA. We analyse the light curves and polarization, as well as the spectral energy distributions at different epochs, corresponding to different brightness states. The IR-optical-UV continuum spectrum of the variable component corresponds to a power law with a constant slope of -1.6, while in the 2.4-10 keV X-ray band it varies in slope from -1.1 to -1.6. The steepest X-ray spectrum occurs at a flux minimum. During a decline in flux from maximum in late 2006, the optical and 43 GHz core polarization vectors rotate by ~300 degrees. The continuum spectrum agrees with steady injection of relativistic electrons with a power-law energy distribution of slope -3.2 that is steepened to -4.2 at high energies by radiative losses. The X-ray emission at flux minimum comes most likely from a new component that starts in an upstream section of the jet where inverse Compton scattering of seed photons from outside the jet is important. The rotation of the polarization vector implies that the jet contains a helical magnetic field that extends ~20 pc past the 43 GHz core.
We present UBVRI light curves of BL Lacertae from May 2000 to January 2001, obtained by 24 telescopes in 11 countries. More than 15000 observations were performed in that period, which was the extension of the Whole Earth Blazar Telescope (WEBT) campaign originally planned for July-August 2000. Rapid flux oscillations are present all the time, involving variations up to a few tenths of mag on hour time scales, and witnessing an intense intraday activity of this source. Colour indexes have been derived by coupling the highest precision B and R data taken by the same instrument within 20 min and after subtracting the host galaxy contribution from the fluxes. The 620 indexes obtained show that the optical spectrum is weakly sensitive to the long-term trend, while it strictly follows the short-term flux behaviour, becoming bluer when the brightness increases. Thus, spectral changes are not related to the host galaxy contribution, but they are an intrinsic feature of fast flares. We suggest that the achromatic mechanism causing the long-term flux base-level modulation can be envisaged in a variation of the relativistic Doppler beaming factor, and that this variation is likely due to a change of the viewing angle. Discrete correlation function (DCF) analysis reveals the existence of a characteristic time scale of variability of about 7 h in the light curve of the core WEBT campaign, while no measurable time delay between variations in the B and R bands is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا