Do you want to publish a course? Click here

Decomposition numbers for finite Coxeter groups and generalised non-crossing partitions

304   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

Given a finite irreducible Coxeter group $W$, a positive integer $d$, and types $T_1,T_2,...,T_d$ (in the sense of the classification of finite Coxeter groups), we compute the number of decompositions $c=si_1si_2 cdotssi_d$ of a Coxeter element $c$ of $W$, such that $si_i$ is a Coxeter element in a subgroup of type $T_i$ in $W$, $i=1,2,...,d$, and such that the factorisation is minimal in the sense that the sum of the ranks of the $T_i$s, $i=1,2,...,d$, equals the rank of $W$. For the exceptional types, these decomposition numbers have been computed by the first author. The type $A_n$ decomposition numbers have been computed by Goulden and Jackson, albeit using a somewhat different language. We explain how to extract the type $B_n$ decomposition numbers from results of Bona, Bousquet, Labelle and Leroux on map enumeration. Our formula for the type $D_n$ decomposition numbers is new. These results are then used to determine, for a fixed positive integer $l$ and fixed integers $r_1le r_2le ...le r_l$, the number of multi-chains $pi_1le pi_2le ...le pi_l$ in Armstrongs generalised non-crossing partitions poset, where the poset rank of $pi_i$ equals $r_i$, and where the block structure of $pi_1$ is prescribed. We demonstrate that this result implies all known enumerative results on ordinary and generalised non-crossing partitions via appropriate summations. Surprisingly, this result on multi-chain enumeration is new even for the original non-crossing partitions of Kreweras. Moreover, the result allows one to solve the problem of rank-selected chain enumeration in the type $D_n$ generalised non-crossing partitions poset, which, in turn, leads to a proof of Armstrongs $F=M$ Conjecture in type $D_n$.



rate research

Read More

In this paper, we find a strong new restriction on the structure of CI-groups. We show that, if $R$ is a generalised dihedral group and if $R$ is a CI-group, then for every odd prime $p$ the Sylow $p$-subgroup of $R$ has order $p$, or $9$. Consequently, any CI-group with quotient a generalised dihedral group has the same restriction, that for every odd prime $p$ the Sylow $p$-subgroup of the group has order $p$, or $9$. We also give a counter example to the conjecture that every BCI-group is a CI-group.
We show that inductive limits of virtually nilpotent groups have strongly quasidiagonal C*-algebras, extending results of the first author on solvable virtually nilpotent groups. We use this result to show that the decomposition rank of the group C*-algebra of a finitely generated virtually nilpotent group $G$ is bounded by $2cdot h(G)!-1$, where $h(G)$ is the Hirsch length of $G.$ This extends and sharpens results of the first and third authors on finitely generated nilpotent groups. It then follows that if a C*-algebra generated by an irreducible representation of a virtually nilpotent group satisfies the universal coefficient theorem, it is classified by its Elliott invariant.
Let W be an arbitrary Coxeter group. If two elements have expressions that are cyclic shifts of each other (as words), then they are conjugate (as group elements) in W. We say that w is cyclically fully commutative (CFC) if every cyclic shift of any reduced expression for w is fully commutative (i.e., avoids long braid relations). These generalize Coxeter elements in that their reduced expressions can be described combinatorially by acyclic directed graphs, and cyclically shifting corresponds to source-to-sink
85 - Rachael Boyd 2018
We give formulas for the second and third integral homology of an arbitrary finitely generated Coxeter group, solely in terms of the corresponding Coxeter diagram. The first of these calculations refines a theorem of Howlett, while the second is entirely new and is the first explicit formula for the third homology of an arbitrary Coxeter group.
We study two impartial games introduced by Anderson and Harary and further developed by Barnes. Both games are played by two players who alternately select previously unselected elements of a finite group. The first player who builds a generating set from the jointly selected elements wins the first game. The first player who cannot select an element without building a generating set loses the second game. After the development of some general results, we determine the nim-numbers of these games for abelian and dihedral groups. We also present some conjectures based on computer calculations. Our main computational and theoretical tool is the structure diagram of a game, which is a type of identification digraph of the game digraph that is compatible with the nim-numbers of the positions. Structure diagrams also provide simple yet intuitive visualizations of these games that capture the complexity of the positions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا