Do you want to publish a course? Click here

Multiple Parton Scattering in Nuclei: Quark-quark Scattering

193   0   0.0 ( 0 )
 Added by Xin-Nian Wang
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Modifications to quark and antiquark fragmentation functions due to quark-quark (antiquark) double scattering in nuclear medium are studied systematically up to order cal{O}(alpha_{s}^2)$ in deeply inelastic scattering (DIS) off nuclear targets. At the order $cal{O}(alpha_s^2)$, twist-four contributions from quark-quark (antiquark) rescattering also exhibit the Landau-Pomeranchuck-Midgal (LPM) interference feature similar to gluon bremsstrahlung induced by multiple parton scattering. Compared to quark-gluon scattering, the modification, which is dominated by $t$-channel quark-quark (antiquark) scattering, is only smaller by a factor of $C_F/C_A=4/9$ times the ratio of quark and gluon distributions in the medium. Such a modification is not negligible for realistic kinematics and finite medium size. The modifications to quark (antiquark) fragmentation functions from quark-antiquark annihilation processes are shown to be determined by the antiquark (quark) distribution density in the medium. The asymmetry in quark and antiquark distributions in nuclei will lead to different modifications of quark and antiquark fragmentation functions inside a nucleus, which qualitatively explains the experimentally observed flavor dependence of the leading hadron suppression in semi-inclusive DIS off nuclear targets. The quark-antiquark annihilation processes also mix quark and gluon fragmentation functions in the large fractional momentum region, leading to a flavor dependence of jet quenching in heavy-ion collisions.



rate research

Read More

In this paper we estimate the double parton scattering (DPS) contribution for the heavy quark production in $pA$ collisions at the LHC. The cross sections for the charm and bottom production are estimated using the dipole approach and taking into account the saturation effects, which are important for high energies and for the scattering with a large nucleus. We compare the DPS contribution with the single parton scattering one and demonstrate that in the case of charm production both are similar in the kinematical range probed by the LHC. Predictions for the rapidity range analysed by the LHCb Collaboration are also presented. Our results indicate that the study of the DPS contribution for the heavy quark production in $pPb$ collisions at the LHC is feasible and can be useful to probe the main assumptions of the approach.
Large angle gluon radiations induced by multiple parton scatterings contribute to dijet production in deeply inelastic scattering off a large nucleus at the Electron-Ion Collider. Within the generalized high-twist approach to multiple parton scattering, such contributions at the leading order in perturbative QCD and large Bjorken momentum fraction $x_B$ can be expressed as a convolution of the multiple parton scattering amplitudes and the transverse momentum dependent (TMD) two-parton correlation matrix elements. We study this medium-induced dijet spectrum and its azimuthal angle correlation under the approximation of small longitudinal momentum transfer in the secondary scattering and the factorization of two-parton correlation matrix elements as a product of quark and gluon TMD parton distribution function (PDF). Using a simple model for gluon saturation based on the parametrized gluon TMD PDF, we can calculate the $x_B$ and $Q^2$ dependence of the saturation scale and parton transport coefficient $hat q$. Contributions to dijet cross section from double scattering are power-suppressed and only become sizable for mini-jets at small transverse momentum. We find that the total dijet correlation for these mini-jets, which also includes the contribution from single scattering, is sensitive to the transverse momentum broadening in the quark TMD PDF at large $x$ and saturation in the gluon TMD PDF at small $x$ inside the nucleus. The correlation from double scattering is also found to increase with the dijet rapidity gap and have a quadratic nuclear-size dependence because of the Landau-Pomeranchuk-Migdal (LPM) interference in gluon emission induced by multiple scattering. Experimental measurements of such unique features in the dijet correlation can shed light on the LPM interference in strong interaction and gluon saturation in large nuclei.
Double parton correlations, having effects on the double parton scattering processes occurring in high-energy hadron-hadron collisions, for example at the LHC, are studied in the valence quark region, within constituent quark models. In this framework, two particle correlations are present without any additional prescription, at variance with what happens, for example, in independent particle models, such as the MIT bag model in its simplest version. From the present analysis, conclusions similar to the ones obtained recenty in a modified version of the bag model can be drawn: correlations in the longitudinal momenta of the active quarks are found to be sizable, while those in transverse momentum are much smaller. However, the used framework allows to understand clearly the dynamical origin of the correlations. In particular, it is shown that the small size of the correlations in transverse momentum is a model dependent result, which would not occur if models with sizable quark orbital angular momentum were used to describe the proton. Our analysis permits therefore to clarify the dynamical origin of the double parton correlations and to establish which, among the features of the results, are model independent. The possibility to test experimentally the studied effects is discussed.
93 - H. Fujii 2003
Quarkonium suppression in heavy ion collisions is a potential signature of the formation of the quark-gluon plasma. After a very brief review of the J/psi result at CERN, we restrict our discussion to the effects of the high-energy multiple scattering of the quark pair in the colliding nuclei.
We investigate the radiative break-up of a highly energetic quark or gluon in a high-temperature QCD plasma. Within an inertial range of momenta $T ll omega ll E$, where $E$ denotes the energy of the original hard parton (jet) and $T$ the temperature of of the medium, we find that, as a result of the turbulent nature of the underlying parton cascade, the quark to gluon ratio of the soft fragments tends to a universal constant value that is independent of the initial conditions. We discuss implications of this result to jet quenching physics and the problem of thermalization of the quark-gluon plasma in heavy ion collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا