Do you want to publish a course? Click here

Revisit of Spectral Bundle Methods: Primal-dual (Sub)linear Convergence Rates

78   0   0.0 ( 0 )
 Added by Lijun Ding
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The spectral bundle method proposed by Helmberg and Rendl is well established for solving large scale semidefinite programs (SDP) thanks to its low per iteration computational complexity and strong practical performance. In this paper, we revisit this classic method showing it achieves sublinear convergence rates in terms of both primal and dual SDPs under merely strong duality. Prior to this work, only limited dual guarantees were known. Moreover, we develop a novel variant, called the block spectral bundle method (Block-Spec), which not only enjoys the same convergence rate and low per iteration complexity, but also speeds up to linear convergence when the SDP admits strict complementarity. Numerically, we demonstrate the effectiveness of both methods, confirming our theoretical findings that the block spectral bundle method can substantially speed up convergence.



rate research

Read More

In this work, we revisit a classical incremental implementation of the primal-descent dual-ascent gradient method used for the solution of equality constrained optimization problems. We provide a short proof that establishes the linear (exponential) convergence of the algorithm for smooth strongly-convex cost functions and study its relation to the non-incremental implementation. We also study the effect of the augmented Lagrangian penalty term on the performance of distributed optimization algorithms for the minimization of aggregate cost functions over multi-agent networks.
In this work, we approach the minimization of a continuously differentiable convex function under linear equality constraints by a second-order dynamical system with asymptotically vanishing damping term. The system is formulated in terms of the augmented Lagrangian associated to the minimization problem. We show fast convergence of the primal-dual gap, the feasibility measure, and the objective function value along the generated trajectories. In case the objective function has Lipschitz continuous gradient, we show that the primal-dual trajectory asymptotically weakly converges to a primal-dual optimal solution of the underlying minimization problem. To the best of our knowledge, this is the first result which guarantees the convergence of the trajectory generated by a primal-dual dynamical system with asymptotic vanishing damping. Moreover, we will rediscover in case of the unconstrained minimization of a convex differentiable function with Lipschitz continuous gradient all convergence statements obtained in the literature for Nesterovs accelerated gradient method.
While the techniques in optimal control theory are often model-based, the policy optimization (PO) approach can directly optimize the performance metric of interest without explicit dynamical models, and is an essential approach for reinforcement learning problems. However, it usually leads to a non-convex optimization problem in most cases, where there is little theoretical understanding on its performance. In this paper, we focus on the risk-constrained Linear Quadratic Regulator (LQR) problem with noisy input via the PO approach, which results in a challenging non-convex problem. To this end, we first build on our earlier result that the optimal policy has an affine structure to show that the associated Lagrangian function is locally gradient dominated with respect to the policy, based on which we establish strong duality. Then, we design policy gradient primal-dual methods with global convergence guarantees to find an optimal policy-multiplier pair in both model-based and sample-based settings. Finally, we use samples of system trajectories in simulations to validate our policy gradient primal-dual methods.
113 - D. Leventhal , A.S. Lewis 2008
We study randomized variants of two classical algorithms: coordinate descent for systems of linear equations and iterated projections for systems of linear inequalities. Expanding on a recent randomized iterated projection algorithm of Strohmer and Vershynin for systems of linear equations, we show that, under appropriate probability distributions, the linear rates of convergence (in expectation) can be bounded in terms of natural linear-algebraic condition numbers for the problems. We relate these condition measures to distances to ill-posedness, and discuss generalizations to convex systems under metric regularity assumptions.
We study convergence rates of the classic proximal bundle method for a variety of nonsmooth convex optimization problems. We show that, without any modification, this algorithm adapts to converge faster in the presence of smoothness or a Holder growth condition. Our analysis reveals that with a constant stepsize, the bundle method is adaptive, yet it exhibits suboptimal convergence rates. We overcome this shortcoming by proposing nonconstant stepsize schemes with optimal rates. These schemes use function information such as growth constants, which might be prohibitive in practice. We complete the paper with a new parallelizable variant of the bundle method that attains near-optimal rates without prior knowledge of function parameters. These results improve on the limited existing convergence rates and provide a unified analysis approach across problem settings and algorithmic details. Numerical experiments support our findings and illustrate the effectiveness of the parallel bundle method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا