Do you want to publish a course? Click here

During the LIGO and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
Advanced LIGO and Advanced Virgo will be all-sky monitors for merging compact objects within a few hundred Mpc. Finding the electromagnetic counterparts to these events will require an understanding of the transient sky at low red-shift (z<0.1). We performed a systematic search for extragalactic, low red-shift, transient events in the XMM-Newton Slew Survey. In a flux limited sample, we found that highly-variable objects comprised 10% of the sample, and that of these, 10% were spatially coincident with cataloged optical galaxies. This led to 4x10^-4 transients per square degree above a flux threshold of 3x10^-12 erg cm-2 s-1 [0.2-2 keV] which might be confused with LIGO/Virgo counterparts. This represents the first extragalactic measurement of the soft X-ray transient rate within the Advanced LIGO/Virgo horizon. Our search revealed six objects that were spatially coincident with previously cataloged galaxies, lacked evidence for optical AGNs, displayed high luminosities around 10^43 erg s-1, and varied in flux by more than a factor of ten when compared with the ROSAT All-Sky Survey. At least four of these displayed properties consistent with previously observed tidal disruption events.
Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipelines ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا