Do you want to publish a course? Click here

Polar ring galaxies are ideal objects with which to study the three-dimensional shapes of galactic gravitational potentials since two rotation curves can be measured in two perpendicular planes. Observational studies have uncovered systematically larger rotation velocities in the extended polar rings than in the associated host galaxies. In the dark matter context, this can only be explained through dark halos that are systematically flattened along the polar rings. Here, we point out that these objects can also be used as very effective tests of gravity theories, such as those based on Milgromian dynamics (MOND). We run a set of polar ring models using both Milgromian and Newtonian dynamics to predict the expected shapes of the rotation curves in both planes, varying the total mass of the system, the mass of the ring with respect to the host, as well as the size of the hole at the center of the ring. We find that Milgromian dynamics not only naturally leads to rotation velocities being typically higher in the extended polar rings than in the hosts, as would be the case in Newtonian dynamics without dark matter, but that it also gets the shape and amplitude of velocities correct. Milgromian dynamics thus adequately explains this particular property of polar ring galaxies.
Direct N-body calculations are presented of the early evolution of exposed clusters to quantify the influence of gas expulsion on the time-varying surface brightness. By assuming that the embedded OB stars drive out most of the gas after a given time delay, the change of the surface brightness of expanding star clusters is studied. The influence of stellar dynamics and stellar evolution is discussed. The growth of the core radii of such models shows a remarkable core re-virialisation. The decrease of the surface mass density during gas expulsion is large and is only truncated by this re-virialisation process. However, the surface brightness within a certain radius does not increase noticeably. Thus, an embedded star cluster cannot reappear in observational surveys after re-virialisation. This finding has a bearing on the observed infant mortality fraction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا