Do you want to publish a course? Click here

It is often stated that one-nucleon knockout in reactions with heavy ion targets are mostly sensitive to the tails of the bound-state wavefunctions. In contrast, (p,2p) and (p,pn) reactions are known to access information on the full overlap functions within the nucleus. We analyze the oxygen isotopic chain and explore the differences between single-particle wave functions generated with potential models, used in the experimental analysis of knockout reactions, and ab initio computations from self-consistent Greens function theory. Contrary to the common belief, we find that not only the tail of the overlap functions, but also information on their internal part are assessed in both reaction mechanisms, which are crucial to yield accurately determined spectroscopic information. The recent revival of (p,2p) reactions, this time in inverse kinematic experiments, will help improve studies of unstable nuclei if combined with a better experimental analysis with inputs from many-body ab initio theories. We suggest that input from state-of-the-art ab initio computations will be fundamental to quantify model dependencies in the analysis of experiments.
Neutron tunneling between neutron-rich nuclei in inhomogeneous dense matter encountered in neutron star crusts can release enormous energy on a short-timescale to power explosive phenomena in neutron stars. In this work we clarify aspects of this process that can occur in the outer regions of neutron stars when oscillations or cataclysmic events increase the ambient density. We use a time-dependent Hartree-Fock-Bogoliubov formalism to determine the rate of neutron diffusion and find that large amounts of energy can be released rapidly. The role of nuclear binding, the two-body interaction and pairing, on the neutron diffusion times is investigated. We consider a one-dimensional quantum diffusion model and extend our analysis to study the impact of diffusion in three-dimensions. We find that these novel neutron transfer reactions can generate energy at the amount of $simeq 10^{40}-10^{44}$ ergs under suitable conditions.
We study the effects of final state interactions in the non-mesonic weak decay $Lambda N rightarrow nN$ (n is a neutron and N is either a neutron or a proton) of the hypernucleus $_Lambda^4$He. Using a three-body model the effects of distortion of the interaction of the emitted nucleon pair with the residual nucleus is considered. We also study the influence of the final state interaction between the emitted nucleons using the Migdal-Watson model. The effect of spin symmetries in the final state of the pair is also considered. Based on our calculations, we conclude that final state interactions play a minor role in the kinetic energy spectrum of the emitted nucleon pair.
Alternative methods to calculate neutron capture cross sections on radioactive nuclei are reported using the theory of Inclusive Non-Elastic Breakup (INEB) developed by Hussein and McVoy [1]. The statistical coupled-channels theory proposed in Ref. [2] is further extended in the realm of random matrices. The case of reactions with the projectile and the target being two-cluster nuclei is also analyzed and applications are made for scattering from a deuteron target [3]. An extension of the theory to a three-cluster projectile incident on a two-cluster target is also discussed. The theoretical developments described here should open new possibilities to obtain information on the neutron capture cross sections of radioactive nuclei using indirect methods.
Our understanding of the observed elemental abundance in the universe, stemming from nuclear reactions during the big bang or from nucleosynthesis within stellar environments, requires theoretical analyses based on multidimensional nucleosynthesis calculations involving hundreds of nuclei connected via thousands of nuclear processes. Up to recently, full nucleosynthesis network calculations remained computationally expensive and prohibitive. A recent publication by a Chinese group led by YuGang Ma [1] has proved that advanced computational algorithms developed in the last decade for the purpose of studying complex networks are paving the way to finally accomplish this ultimate goal of nuclear astrophysics.
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is widely accepted that by doubling the energies of the single-particle states may yield a better agreement with fission data, it does not prove fully successful, since it is not able to explain yields for light and intermediate mass fragments. State-of-the-art calculations are successful to describe the overall shape of the mass distribution of fragments, but fail within a factor of 2-10 for a large number of individual yields. Here, we present a novel approach that provides an account of the additional excitation of primary fragments due to final state interaction with the target. Our method is applied to the 238U + 208Pb reaction at 1 GeV/nucleon (and is applicable to other energies), an archetype case of fission studies with relativistic heavy ions, where we find that the large probability of energy absorption through final state excitation of giant resonances in the fragments can substantially modify the isotopic distribution of final fragments in a better agreement with data. Finally, we demonstrate that large angular momentum transfers to the projectile and to the primary fragments via the same mechanism imply the need of more elaborate theoretical methods than the presently existing ones.
Reactions with radioactive nuclear beams at relativistic energies have opened new doors to clarify the mechanisms of stellar evolution and cataclysmic events involving stars and during the big bang epoch. Numerous nuclear reactions of astrophysical interest cannot be assessed directly in laboratory experiments. Ironically, some of the information needed to describe such reactions, at extremely low energies (e.g., keVs), can only be studied on Earth by using relativistic collisions between heavy ions at GeV energies. In this contribution, we make a short review of experiments with relativistic radioactive beams and of the theoretical methods needed to understand the physics of stars, adding to the knowledge inferred from astronomical observations. We continue by introducing a more detailed description of how the use of relativistic radioactive beams can help to solve astrophysical puzzles and several successful experimental methods. State-of-the-art theories are discussed at some length with the purpose of helping us understand the experimental results reported. The review is not complete and we have focused most of it to traditional methods aiming at the determination of the equation of state of symmetric and asymmetric nuclear matter and the role of the symmetry energy. Whenever possible, under the limitations of our present understanding of experimental data and theory, we try to pinpoint the information still missing to further understand how stars evolve, explode, and how their internal structure might be.
76 - C.A. Bertulani 2019
I present a brief summary of the first three decades of studies of pygmy resonances in nuclei and their relation to the symmetry energy of nuclear matter. I discuss the first experiments and theories dedicated to study the electromagnetic response in halo nuclei and how a low energy peak was initially identified as a candidate for the pygmy resonance. This is followed by the description of a collective state in medium heavy and heavy nuclei which was definitely identified as a pygmy resonance. The role of the slope parameter of the symmetry energy in determining the properties of neutron stars is stressed. The theoretical and experimental information collected on pygmy resonances, neutron skins, and the numerous correlations found with the slope parameter is briefly reviewed.
The equation of state (EOS) of infinite nuclear matter with a small proton/neutron fraction is a crucial input to determine the properties of neutron stars and compare model predictions to astronomical observations. The so-called `symmetry energy is the part of the EOS accounting for the difference in the number of neutrons and protons. Numerous experiments have been devised to assess the symmetry energy and constrain its functional dependence with the nucleon density. Further constraints follow from a stellar modeling using the EOS to reproduce astronomical observations such as neutron star masses and radii. The recent detection of gravitational waves emitted from neutron star mergers and the nucleosynthesis ensuing from these events caused a surge of interest for such studies. Several types of nuclear reactions have been proposed to study the symmetry energy part of the EOS. Some of them consist in determining the neutron skin in nuclei and exploit its correlation with the slope parameter of the symmetry energy. In this article we explore a particular set of reactions using high energy ($E_{lab} sim 1$ GeV/nucleon) neutron-rich projectiles. We explore measurements of all reaction fragments (a) in the same isotopic chain, i.e., only by removal of neutrons, (b) in all charge-changing channels, and (c) total interaction cross sections. Using Hartree-Fock-Bogoliubov (HBF) predictions for neutron and proton densities with Skyrme interactions, we explore the sensitivity of these cross sections with the neutron skin in nuclei.
We develop a four-body model for the inclusive breakup of two-fragment halo projectiles colliding with two-fragment targets. In the case of a short lived projectiles, such as halo nuclei, on a deuteron target, the model allows the extraction of the neutron capture cross section of such projectiles. We supply examples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا