Do you want to publish a course? Click here

We demonstrate that interacting spasers arranged in a 2D array of arbitrary size can be mutually synchronized allowing them to supperradiate. For arrays smaller than the free space wavelength, the total radiated power is proportional to the square of the number N of spasers. For larger arrays, the radiation power is linear in N. However, the emitted beam becomes highly directional with intensity of radiation proportional to N^2 in the direction perpendicular to the plane of the array. Thus, spasers, which mainly amplify near fields, become an efficient source of far field radiation when they are arranged into an array.
We find the conditions upon the amplitude and frequency of an external electromagnetic field at which the dipole moment of a Bergman-Stockman spaser oscillates in antiphase with the field. For these values of the amplitude and frequency the losses in metal nanoparticles is exactly compensated of by gain. This shows that spasers may be used as inclusions in designing lossless metamaterials.
We show that net amplification of surface plasmons is achieved in channel in a metal plate due to nonradiative excitation by quantum dots. This makes possible lossless plasmon transmission lines in the channel as well as the amplification and generation of coherent surface plasmons. As an example, a ring channel spaser is considered.
We demonstrate that when the frequency of the external field differs from the lasing frequency of an autonomous spaser, the spaser exhibits stochastic oscillations at low field intensity. The plasmon oscillations lock to the frequency of the external field only when the field amplitude exceeds a threshold value. We find a region of values of the external field amplitude and the frequency detuning (the Arnold tongue) for which the spaser synchronizes with the external wave.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا