Do you want to publish a course? Click here

The Cauchy problem for the Zakharov system in four dimensions is considered. Some new well-posedness results are obtained. For small initial data, global well-posedness and scattering results are proved, including the case of initial data in the energy space. None of these results is restricted to radially symmetric data.
82 - Zihua Guo 2014
We prove scattering for the 2D cubic derivative Schrodinger equation with small data in the critical Besov space with one degree angular regularity. The main new ingredient is that we prove a spherically averaged maximal function estimate for the 2D Schrodinger equation. We also prove a global well-posedness result for the 2D Schrodinger map in the critical Besov space with one degree angular regularity. The key ingredients for the latter results are the spherically averaged maximal function estimate, null form structure observed in cite{Bej}, as well as the generalised spherically averaged Strichartz estimates obtained in cite{Guo2} in order to exploit the null form structure.
158 - Zihua Guo 2014
We prove generalized Strichartz estimates with weaker angular integrability for the Schrodinger equation. Our estimates are sharp except some endpoints. Then we apply these new estimates to prove the scattering for the 3D Zakharov system with small data in the energy space with low angular regularity. Our results improve the results obtained recently in cite{GLNW}.
We consider the global dynamics below the ground state energy for the Zakharov system in the 3D radial case. We obtain dichotomy between the scattering and the growup.
132 - Zihua Guo , Kenji Nakanishi 2012
We prove small energy scattering for the 3D Zakharov system with radial symmetry. The main ingredients are normal form reduction and the radial-improved Strichartz estimates.
189 - Zihua Guo , Yuzhao Wang 2009
We prove that the Cauchy problem for the Schrodinger-Korteweg-de Vries system is locally well-posed for the initial data belonging to the Sovolev spaces $L^2(R)times H^{-{3/4}}(R)$. The new ingredient is that we use the $bar{F}^s$ type space, introduced by the first author in cite{G}, to deal with the KdV part of the system and the coupling terms. In order to overcome the difficulty caused by the lack of scaling invariance, we prove uniform estimates for the multiplier. This result improves the previous one by Corcho and Linares.
91 - Zihua Guo 2009
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in $H^{-3/4}(R)$ and the modified Korteweg-de Vries initial-value problem is globally well-posed in $H^{1/4}(R)$. The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation at $s=-3/4$ by constructing some special resolution spaces in order to avoid some logarithmic divergence from the high-high interactions. Our local solution has almost the same properties as those for $H^s (s>-3/4)$ solution which enable us to apply the I-method to extend it to a global solution.
135 - Zihua Guo 2008
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation [partial_t u+|partial_x|^{1+alpha}partial_x u+uu_x=0, u(x,0)=u_0(x),] is locally well-posed in the Sobolev spaces $H^s$ for $s>1-alpha$ if $0leq alpha leq 1$. The new ingredient is that we develop the methods of Ionescu, Kenig and Tataru cite{IKT} to approach the problem in a less perturbative way, in spite of the ill-posedness results of Molinet, Saut and Tzvetkovin cite{MST}. Moreover, as a bi-product we prove that if $0<alpha leq 1$ the corresponding modified equation (with the nonlinearity $pm uuu_x$) is locally well-posed in $H^s$ for $sgeq 1/2-alpha/4$.
226 - Zihua Guo , Baoxiang Wang 2008
Considering the Cauchy problem for the modified finite-depth-fluid equation $partial_tu-G_delta(partial_x^2u)mp u^2u_x=0, u(0)=u_0$, where $G_delta f=-i ft ^{-1}[coth(2pi delta xi)-frac{1}{2pi delta xi}]ft f$, $deltages 1$, and $u$ is a real-valued function, we show that it is uniformly globally well-posed if $u_0 in H^s (sgeq 1/2)$ with $ orm{u_0}_{L^2}$ sufficiently small for all $delta ges 1$. Our result is sharp in the sense that the solution map fails to be $C^3$ in $H^s (s<1/2)$. Moreover, we prove that for any $T>0$, its solution converges in $C([0,T]; H^s)$ to that of the modified Benjamin-Ono equation if $delta$ tends to $+infty$.
117 - Zihua Guo 2008
We prove that the complex-valued modified Benjamin-Ono (mBO) equation is locally wellposed if the initial data $phi$ belongs to $H^s$ for $sgeq 1/2$ with $ orm{phi}_{L^2}$ sufficiently small without performing a gauge transformation. Hence the real-valued mBO equation is globally wellposed for those initial datas, which is contained in the results of C. Kenig and H. Takaoka cite{KenigT} where the smallness condition is not needed. We also prove that the real-valued $H^infty$ solutions to mBO equation satisfy a priori local in time $H^s$ bounds in terms of the $H^s$ size of the initial data for $s>1/4$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا