Do you want to publish a course? Click here

We investigate the Majorana neutrino mass matrix $M_{ u}$ with one parameter in the context of two texture zeros and its symmetry realization by non-Abelian discrete symmetry. From numerical calculation, we confirm that the textures $(M_{ u})_{11,12}=0$ and $(M_{ u})_{11,13}=0$ are consistent with the current experimental constraints, and show the correlations between non-zero elements of $M_{ u}$. The ratios of non-zero elements of $M_{ u}$ are constrain in small regions, and we find simple examples of $M_{ u}$ with one real mass parameter. We also discuss symmetry realization of the mass matrix by the type-II seesaw mechanism based on the binary icosahedral symmetry $A_5$ .
We discuss two Higgs doublet models with a softly-broken discrete $mathbb{S}_3$ symmery, where the mass matrix for charged-leptons is predicted as the diagonal form in the weak eigenbasis of lepton fields. Similar to an introduction of $mathbb{Z}_2$ symmetry, the tree level flavor changing neutral current can be forbidden by imposing the $mathbb{S}_3$ symmetry to the model. Under the $mathbb{S}_3$ symmetry, there are four types of Yukawa interactions depending on the $mathbb{S}_3$ charge assignment to right-handed fermions. We find that extra Higgs bosons can be muon and electron specific in one of four types of the Yukawa interaction. This property does not appear in any other two Higgs doublet models with a softly-broken ${mathbb Z}_2$ symmetry. We discuss the phenomenology of the muon and electron specific Higgs bosons at the Large Hadron Collider; namely we evaluate allowed parameter regions from the current Higgs boson search data and discovery potential of such a Higgs boson at the 14 TeV run.
We propose a new type of radiative seesaw model in which observed neutrino masses are generated through a three-loop level diagram in combination with tree-level type-II seesaw mechanism in a renormalizable theory. We introduce a Non-abelian flavor symmetry $T_7$ in order to constrain the form of Yukawa interactions and Higgs potential. Although several models based on a Non-abelian flavor symmetry predict the universal coupling constants among the standard model like Higgs boson and charged leptons, which is disfavored by the current LHC data, our model can avoid such a situation. We show a benchmark parameter set that is consistent with the current experimental data, and we discuss multi-muon events as a key collider signature to probe our model.
Recently the AMS-02 experiment has released the data of positron fraction with much small statistical error. Because of the small error, it is no longer easy to fit the data with a single dark matter for a fixed diffusion model and dark matter profile. In this paper, we propose a new interpretation of the data that it originates from decay of two dark matter. This interpretation gives a rough threshold of the lighter DM component. When DM decays into leptons, the positron fraction in the cosmic ray depends on the flavor of the final states, and this is fixed by imposing non-Abelian discrete symmetry in our model. By assuming two gauge-singlet fermionic decaying DM particles, we show that a model with non-Abelian discrete flavor symmetry, e.g. $T_{13}$, can give a much better fitting to the AMS-02 data compared with single dark matter scenario. Few dimension six operators of universal leptonic decay of DM particles are allowed in our model since its decay operators are constrained by the $T_{13}$ symmetry. We also show that the lepton masses and mixings are consistent with current experimental data, due to the flavor symmetry.
We construct a loop induced seesaw model in a TeV scale theory with gauged U(1)_{B-L} symmetry. Light neutrino masses are generated at two-loop level and right-handed neutrinos also obtain their masses by one-loop effect. Multi-component Dark Matters (DMs) are included in our model due to the remnant discrete symmetry after the B-L symmetry breaking and the Z_2 parity which is originally imposed to the model. We investigate the multi-component DM properties, in which we have two fermionic DMs with different mass scales, O(10) GeV and O(100-1000) GeV. The former mass corresponds to the lightest right-handed neutrino mass induced by the loop effect, although the latter one to the SM gauge singlet fermion. We show each of the DM annihilation processes and compare to the the observation of relic abundance, together with the constraints of Lepton Flavor Violation (LFV) and active neutrino masses. Moreover we show that our model has some parameter region allowed by the direct detection result reported by XENON100, and it is possible to verify the model by the future XENON experiment.
We propose a radiative seesaw model with an inert triplet scalar field in which Majorana neutrino masses are generated at the two loop level. There are fermionic or bosonic dark matter candidates in the model. We find that each candidate can satisfy the WMAP data when its mass is taken to be around the half of the mass of the standard model like Higgs boson. We also discuss phenomenology of the inert triplet scalar bosons, especially focusing on the doubly-charged scalar bosons at Large Hadron Collider in parameter regions constrained by the electroweak precision data and WMAP data. We study how we can distinguish our model from the minimal Higgs triplet model.
We study a radiative inverse seesaw model with local B-L symmetry, in which we extend the neutrino mass structure that is generated through a kind of inverse seesaw framework to the more generic one than our previous work. We focus on a real part of bosonic particle as a dark matter and investigate the features in O(1-80) GeV mass range, reported by the experiments such as CoGeNT and XENON (2012).
It is appealing to stabilize dark matter by the same discrete symmetry that is used to explain the structure of quark and lepton mass matrices. However, to generate the observed fermion mixing patterns, any flavor symmetry must necessarily be broken, rendering dark matter unstable. We study singlet, doublet and triplet SU(2) multiplets of both scalar and fermion dark matter candidates and enumerate the conditions under which no d < 6 dark matter decay operators are generated even in the case if the flavor symmetry is broken to nothing. We show that the VEVs of flavon scalars transforming as higher multiplets (e.g. triplets) of the flavor group must be at the electroweak scale. The most economical way for that is to use SM Higgs boson(s) as flavons. Such models can be tested by the LHC experiments. This scenario requires the existence of additional Froggatt-Nielsen scalars that generate hierarchies in Yukawa couplings. We study the conditions under which large and small flavor breaking parameters can coexist without destabilizing the dark matter.
We try to interpret a very light dark matter with mass of 5~10 GeV which is in favor of the recent experiments reported by CoGeNT and DAMA, in a non-supersymmetric extension of radiative seesaw model with a family symmetry D_6 x Z_2 x Z_2. We show that a D_6 singlet real scalar field can be a promising dark matter candidate, and it gives the elastic cross section sigma simeq 7x10^{-41} cm^2 which is required by these experiments. Our dark matter interacts with a D_6 singlet scalar Higgs boson, which couples only to quark sector. The dark matter-nucleon cross section and new decay mode h->DM DM can be large if the standard model Higgs boson h is light. The Higgs phenomenology is also discussed.
We study a fermionic dark matter in a non-supersymmetric extension of the standard model with a family symmetry based on D6xZ2xZ2. In our model, the final state of the dark matter annihilation is determined to be e+ e- by the flavor symmetry, which is consistent with the PAMELA result. At first, we show that our dark matter mass should be within the range of 230 GeV - 750 GeV in the WMAP analysis combined with mu to e gamma constraint. Moreover we simultaneously explain the experiments of direct and indirect detection, by simply adding a gauge and D6 singlet real scalar field. In the direct detection experiments, we show that the lighter dark matter mass ~ 230 GeV and the lighter standard model Higgs boson ~ 115 GeV is in favor of the observed bounds reported by CDMS II and XENON100. In the indirect detection experiments, we explain the positron excess reported by PAMELA through the Breit-Wigner enhancement mechanism. We also show that our model is consistent with no antiproton excess suggested by PAMELA.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا