Do you want to publish a course? Click here

292 - Zhe Guan , Huan He , Yong-Jian Han 2013
The ability to reach a maximally entangled state from a separable one through the use of a two-qubit unitary operator is analyzed for mixed states. This extension from the known case of pure states shows that there are at least two families of gates which are able to give maximum entangling power for all values of purity. It is notable that one of this gates coincides with a maximum discording one. We give analytical proof that such gate is indeed perfect entangler at all purities and give numerical evidence for the existence of the second one. Further, we find that there are other gates, many in fact, which are perfect entanglers for a restricted range of purities. This highlights the fact that many perfect entangler gates could in principle be found if a thorough analysis of the full parameter space is performed.
166 - Zhe Guan , Huan He , Yong-Jian Han 2013
Fernando Galve emph{et al.} $[Phys. Rev. Lett. textbf{110}, 010501 (2013)]$ introduced discording power for a two-qubit unitary gate to evaluate its capability to produce quantum discord, and found that a $pi/8$ gate has maximal discording power. This work analyzes the entangling power of a two-qubit unitary gate, which reflects its ability to generate quantum entanglement in another way. Based on the renowned Cartan decomposition of two-qubit unitary gates, we show that the magic power of the $pi/8$ gate produces maximal entanglement for a general value of purities for two-qubit states.
The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the veracity of the central prediction of KZM, i.e., the scaling of the density production and the transit rate, is still an open question. Here, we performed an experiment, based on a nine-stage optical interferometer with an overall fidelity up to 0.975$pm$0.008, that directly supports the central prediction of KZM in quantum non-equilibrium dynamics. In addition, our work has significantly upgraded the number of stages of the optical interferometer to nine with a high fidelity, this technique can also help to push forward the linear optical quantum simulation and computation.
We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of $t/U$ changes from zero to negative on approaching the critical point of quantum phase transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا