Do you want to publish a course? Click here

242 - A. M. Nikitin , Y. Pan , X. Mao 2015
We report a study of the magnetic and electronic properties of the non-centrosymmetric half-Heusler antiferromagnet HoPdBi ($T_N = 2.0$ K). Magnetotransport measurements show HoPdBi has a semimetallic behaviour with a carrier concentration $n=3.7 times 10^{18}$ cm$^{-3}$ extracted from the Shubnikov-de Haas effect. The magnetic phase diagram in the field-temperature plane has been determined by transport, magnetization and thermal expansion measurements: magnetic order is suppressed at $B_Msim 3.6$ T for $T rightarrow 0$. Superconductivity with $T_c sim 1.9$ K is found in the antiferromagnetic phase. Ac-susceptibility measurements provide solid evidence for bulk superconductivity below $T_c = 0.75$ K with a screening signal close to a volume fraction of 100 %. The upper critical field shows an unusual linear temperature variation with $B_{c2}(T rightarrow 0) = 1.1$ T. We also report electronic structure calculations that classify HoPdBi as a new topological semimetal, with a non-trivial band inversion of 0.25 eV.
154 - Y. Pan , D. Wu , J.R. Angevaare 2014
In 3D topological insulators achieving a genuine bulk-insulating state is an important research topic. Recently, the material system (Bi,Sb)$_{2}$(Te,Se)$_{3}$ (BSTS) has been proposed as a topological insulator with high resistivity and a low carrier concentration (Ren textit{et al.} cite{Ren2011}). Here we present a study to further refine the bulk-insulating properties of BSTS. We have synthesized Bi$_{2-x}$Sb${_x}$Te$_{3-y}$Se$_{y}$ single crystals with compositions around $x = 0.5$ and $y = 1.3$. Resistance and Hall effect measurements show high resistivity and record low bulk carrier density for the composition Bi$_{1.46}$Sb$_{0.54}$Te$_{1.7}$Se$_{1.3}$. The analysis of the resistance measured for crystals with different thicknesses within a parallel resistor model shows that the surface contribution to the electrical transport amounts to 97% when the sample thickness is reduced to $1 mu$m. The magnetoconductance of exfoliated BSTS nanoflakes shows 2D weak antilocalization with $alpha simeq -1$ as expected for transport dominated by topological surface states.
A Josephson supercurrent has been induced into the three-dimensional topological insulator Bi1.5Sb0.5Te1.7Se1.3. We show that the transport in Bi1.5Sb0.5Te1.7Se1.3 exfoliated flakes is dominated by surface states and that the bulk conductivity can be neglected at the temperatures where we study the proximity induced superconductivity. We prepared Josephson junctions with widths in the order of 40 nm and lengths in the order of 50 to 80 nm on several Bi1.5Sb0.5Te1.7Se1.3 flakes and measured down to 30 mK. The Fraunhofer patterns unequivocally reveal that the supercurrent is a Josephson supercurrent. The measured critical currents are reproducibly observed on different devices and upon multiple cooldowns, and the critical current dependence on temperature as well as magnetic field can be well explained by diffusive transport models and geometric effects.
539 - B. Y. Pan , Y. Wang , L. J. Zhang 2013
Single crystals of a metal organic complex ce{(C5H12N)CuBr3} (ce{C5H12N} = piperidinium, pipH for short) have been synthesized and the structure was determined by single-crystal X-ray diffraction. ce{(pipH)CuBr3} crystallizes in the monoclinic group $C$2/$c$. Edging-sharing ce{CuBr5} units link to form zigzag chains along the $c$ axis and the neighboring Cu(II) ions with spin-1/2 are bridged by bi-bromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant $J$ $sim$ 17 K. At zero field, ce{(pipH)CuBr3} shows three-dimensional (3D) order below $T_N$ = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant $J$ = 0.65 K is obtained and the ordered magnetic moment $m_0$ is about 0.20 $mu_B$. This value of $m_0$ makes ce{(pipH)CuBr3} a rare compound suitable to study the dimensional crossover problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field $H geq$ 3 T is applied along the $a$ axis. The $H$ - $T$ phase diagram of ce{(pipH)CuBr3} is roughly constructed. The interplay between exchange interactions, dimensionality, Zeeman energy and possible Dzyaloshinkii-Moriya interaction should be the driving force for the multiple phase transitions.
The specific heat and thermal conductivity of the insulating ferrimagnet Y$_3$Fe$_5$O$_{12}$ (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat $C$$_m$ shows a characteristic $T^{1.5}$ dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 10$^{-4}$ eV. The ferromagnetic magnon thermal conductivity $kappa_m$ does not show the characteristic $T^2$ dependence below 0.8 K. To fit the $kappa_m$ data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results complete our understanding of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.
410 - A. F. Wang , B. Y. Pan , X. G. Luo 2013
We measured resistivity and specific heat of high-quality CsFe$_2$As$_2$ single crystals, which were grown by using a self-flux method. The CsFe$_2$As$_2$ crystal shows sharp superconducting transition at 1.8 K with the transition width of 0.1 K. The sharp superconducting transition and pronounced jump in specific heat indicate high quality of the crystals. Analysis on the superconducting-state specific heat supports unconventional pairing symmetry in CsFe$_2$As$_2$.
582 - X. C. Hong , X. L. Li , B. Y. Pan 2013
The thermal conductivity of iron-based superconductor CsFe$_2$As$_2$ single crystal ($T_c =$ 1.81 K) was measured down to 50 mK. A significant residual linear term $kappa_0/T$ = 1.27 mW K$^{-2}$ cm$^{-1}$ is observed in zero magnetic field, which is about 1/10 of the normal-state value in upper critical field $H_{c2}$. In low magnetic field, $kappa_0/T$ increases rapidly with field. The overall field dependence of $kappa_0/T$ for our CsFe$_2$As$_2$ (with residual resistivity $rho_0$ = 1.80 $muOmega$ cm) lies between the dirty KFe$_2$As$_2$ (with $rho_0$ = 3.32 $muOmega$ cm) and the clean KFe$_2$As$_2$ (with $rho_0$ = 0.21 $muOmega$ cm). These results strongly suggest nodal superconducting gap in CsFe$_2$As$_2$, similar to its sister compound KFe$_2$As$_2$.
602 - S. Y. Zhou , X. L. Li , B. Y. Pan 2012
The thermal conductivity $kappa$ of superconductor Ir$_{1-x}$Pt$_{x}$Te$_2$ ($x$ = 0.05) single crystal with strong spin-orbital coupling was measured down to 50 mK. The residual linear term $kappa_0/T$ is negligible in zero magnetic field. In low magnetic field, $kappa_0/T$ shows a slow field dependence. These results demonstrate that the superconducting gap of Ir$_{1-x}$Pt$_{x}$Te$_2$ is nodeless, and the pairing symmetry is likely conventional s-wave, despite the existence of strong spin-orbital coupling and a quantum critical point.
Anderson localization is a general phenomenon of wave physics, which stems from the interference between multiple scattering paths1,2. It was originally proposed for electrons in a crystal, but later was also observed for light3-5, microwaves6, ultrasound7,8, and ultracold atoms9-12. Actually, in a crystal, besides electrons there may exist other quasiparticles such as magnons and spinons. However the search for Anderson localization of these magnetic excitations is rare so far. Here we report the first observation of spinon localization in copper benzoate, an ideal compound of spin-1/2 antiferromagnetic Heisenberg chain, by ultra-low-temperature specific heat and thermal conductivity measurements. We find that while the spinon specific heat Cs displays linear temperature dependence down to 50 mK, the spinons thermal conductivity ks only manifests the linear temperature dependence down to 300 mK. Below 300 mK, ks/T decreases rapidly and vanishes at about 100 mK, which is a clear evidence for Anderson localization. Our finding opens a new window for studying such a fundamental phenomenon in condensed matter physics.
223 - H. G. Zhang , H. Hu , Y. Pan 2009
Laterally localized electronic states are identified on a single layer of graphene on ruthenium. The individual states are separated by 3 nm and comprise regions of about 90 carbon atoms. This constitutes a quantum dot array, evidenced by quantum well resonances that are modulated by the corrugation of the graphene layer. The quantum well resonances are strongest on the isolated hill regions where the graphene is decoupled from the surface. This peculiar nanostructure is expected to become important for single electron physics where it bridges zero-dimensional molecule-like and two-dimensional graphene on a highly regular lattice.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا