Do you want to publish a course? Click here

We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surface contaminants remaining after the electrode-fabrication process. We incorporate a multi-angle ion-bombardment treatment intended to clean the electrode surfaces and interelectrode gaps of microfabricated traps. This procedure helps to minimize redeposition in the gaps between electrodes that can cause electrical shorts. We report heating rates in a stylus-type ion trap prepared in this way that are lower by one order of magnitude compared to a similar untreated stylus-type trap using the same experimental setup.
Microwave near-field quantum control of spin and motional degrees of freedom of 25Mg+ ions can be used to generate two-ion entanglement, as recently demonstrated in Ospelkaus et al. [Nature 476, 181 (2011)]. Here, we describe additional details of the setup and calibration procedures for these experiments. We discuss the design and characteristics of the surface-electrode trap and the microwave system, and compare experimental measurements of the microwave near-fields with numerical simulations. Additionally, we present a method that utilizes oscillating magnetic-field gradients to detect micromotion induced by the ponderomotive radio-frequency potential in linear traps. Finally, we discuss the present limitations of microwave-driven two-ion entangling gates in our system.
Anomalous heating of trapped atomic ions is a major obstacle to their use as quantum bits in a scalable quantum computer. The physical origin of this heating is not fully understood, but experimental evidence suggests that it is caused by electric-field noise emanating from the surface of the trap electrodes. In this study, we have investigated the role that adsorbates on the electrodes play by identifying contaminant overlayers, developing an in situ argon-ion beam cleaning procedure, and measuring ion heating rates before and after cleaning the trap electrodes surfaces. We find a reduction of two orders of magnitude in heating rate after cleaning.
Control over physical systems at the quantum level is a goal shared by scientists in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio frequency or microwave radiation because the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms motion. The field gradients are negligible at these frequencies for freely propagating fields; however, stronger gradients can be generated in the near-field of microwave currents in structures smaller than the free-space wavelength. In the experiments reported here, we coherently manipulate the internal quantum states of the ions on time scales of 20 ns. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation. We implement both operations through the magnetic fields from microwave currents in electrodes that are integrated into the micro-fabricated trap structure and create an entangled state with fidelity 76(3) %. This approach, where the quantum control mechanism is integrated into the trapping device in a scalable manner, can potentially benefit quantum information processing, simulation and spectroscopy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا