Do you want to publish a course? Click here

398 - Y. Ao , Y. Matsuda , A. Beelen 2015
Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.20$^{+0.30}_{-0.35}$ for B6 and 2.20$^{+0.45}_{-0.30}$ for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.
80 - C. Henkel , H. Asiri , Y. Ao 2014
Using the IRAM 30-m telescope, CN and CO isotopologues have been measured toward the central regions of the nearby starburst galaxy NGC253 and the prototypical ultraluminous infrared galaxy Mrk231. In NGC253, the 12C/13C ratio is 40+-10. Assuming that the ratio also holds for the CO emitting gas, this yields 16O/18O = 145+-36 and 16O/17O = 1290+-365 and a 32S/34S ratio close to that measured for the local interstellar medium (20-25). No indication for vibrationally excited CN is found. Peak line intensity ratios between NGC253 and Mrk231 are ~100 for 12C16O and 12C18O J=1-0, while the ratio for 13C16O J=1-0 is ~250. This and similar 13CO and C18O line intensities in the J=1-0 and 2-1 transitions of Mrk231 suggest 12C/13C ~ 100 and 16O/18O ~ 100, in agreement with values obtained for the less evolved ultraluminous merger Arp220. Also accounting for other extragalactic data, 12C/13C ratios appear to vary over a full order of magnitude, from >100 in ultraluminous high redshift galaxies to ~100 in more local such galaxies to ~40 in weaker starbursts not undergoing a large scale merger to 25 in the Central Molecular Zone of the Milky Way. With 12C being predominantly synthesized in massive stars, while 13C is mostly ejected by longer lived lower mass stars at later times, this is qualitatively consistent with our results of decreasing carbon isotope ratios with time and rising metallicity. It is emphasized, however, that both infall of poorly processed material, initiating a nuclear starburst, as well as the ejecta from newly formed massive stars (in particular in case of a top-heavy stellar initial mass function) can raise the carbon isotope ratio for a limited amount of time.
48 - Y. Ao , C. Henkel , J.A. Braatz 2011
We present the detection of the ammonia (NH3) (J,K) = (1,1) to (4,4) and (6,6) inversion lines toward the prototypical Seyfert 2 galaxy NGC 1068, made with the Green Bank Telescope (GBT). This is the first detection of ammonia in a Seyfert galaxy. The ortho-to-para-NH3 abundance ratio suggests that the molecule was formed in a warm medium of at least 20 K. For the NH3 column density and fractional abundance, we find (1.09pm0.23)times10^14 cm^-2 and (2.9pm0.6)times10^-8, respectively, from the inner 1.2 kpc of NGC 1068. The kinetic temperature can be constrained to 80pm20 K for the bulk of the molecular gas, while some fraction has an even higher temperature of 140pm30 K.
151 - Y. Ao , A. Weiss , D. Downes 2008
Using the IRAM 30m telescope and the Plateau de Bure interferometer we have detected the ctwo and the CO 3$-$2, 4$-$3, 6$-$5, 7$-$6 transitions as well as the dust continuum at 3 and 1.2 mm towards the distant luminous infrared galaxy IRAS F10214+4724 at $z=2.286$. The ctwo line is detected for the first time towards this source and IRAS F10214+4724 now belongs to a sample of only 3 extragalactic sources at any redshift where both of the carbon fine structure lines have been detected. The source is spatially resolved by our ctwo observation and we detect a velocity gradient along the east-west direction. The CI line ratio allows us to derive a carbon excitation temperature of 42$^{+12}_{-9}$ K. The carbon excitation in conjunction with the CO ladder and the dust continuum constrain the gas density to $n(hh)$ = $10^{3.6-4.0}$ cm$^{-3}$ and the kinetic temperature to $Trm_{kin}$ = 45--80 K, similar to the excitation conditions found in nearby starburst galaxies. The rest-frame 360 $mu$m dust continuum morphology is more compact than the line emitting region, which supports previous findings that the far infrared luminosity arises from regions closer to the active galactic nucleus at the center of this system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا