Do you want to publish a course? Click here

The feasibility of generation of bright ultrashort gamma-ray pulses is demonstrated in the interaction of a relativistic electron bunch with a counterpropagating tightly-focused superstrong laser beam in the radiation dominated regime. The Compton scattering spectra of gamma-radiation are investigated using a semiclassical description for the electron dynamics in the laser field and a quantum electrodynamical description for the photon emission. We demonstrate the feasibility of ultrashort gamma-ray bursts of hundreds of attoseconds and of dozens of megaelectronvolt photon energies in the near-backwards direction of the initial electron motion. The tightly focused laser field structure and radiation reaction are shown to be responsible for such short gamma-ray bursts which are independent of the durations of the electron bunch and of the laser pulse. The results are measurable with the laser technology available in a near-future.
A vacuum autoresonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.
Autoresonance laser acceleration of electrons is theoretically investigated using circularly polarized focused Gaussian pulses. Many-particle simulations demonstrate feasibility of creating over 10-GeV electron bunches of ultra-high quality (relative energy spread of order 10^-4), suitable for fundamental high-energy particle physics research. The laser peak intensities and axial magnetic field strengths required are up to about 10^18 W/cm^2 (peak power ~10 PW) and 60 T, respectively. Gains exceeding 100 GeV are shown to be possible when weakly focused pulses from a 200-PW laser facility are used.
98 - Bo Li 2012
The origin of the heliospheric magnetic flux on the Sun, and hence the origin of the solar wind, is a topic of hot debate.While the prevailing view is that the solar wind originates from outside coronal streamer helmets, there also exists the suggestion that the open magnetic field spans a far wider region.Without the definitive measurement of the coronal magnetic field, it is difficult to resolve the conflict between the two scenarios without doubt.We present two 2-dimensional, Alfvenic-turbulence-based models of the solar corona and solar wind, one with and the other without a closed magnetic field region in the inner corona.The purpose of the latter model is to test whether it is possible to realize a picture suggested by polarimetric measurements of the corona using the FeXIII 10747AA line, where open magnetic field lines seem to penetrate the streamer base.The boundary conditions at the coronal base are able to account for important observational constraints, especially those on the magnetic flux distribution.Interestingly, the two models provide similar polarized brightness (pB) distributions in the field of view (FOV) of SOHO/LASCO C2 and C3 coronagraphs.In particular, a dome-shaped feature is present in the C2 FOV even for the model without any closed magnetic field.Moreover, both models fit equally well the Ulysses data scaled to 1 AU.We suggest that: 1) The pB observations cannot be safely taken as a proxy for the magnetic field topology, as often implicitly assumed.2) The Ulysses measurements, especially the one showing a nearly uniform distribution with heliocentric latitude of the radial magnetic field, do not rule out the ubiquity of open magnetic fields on the Sun.
204 - Xing Li , Yonghui Wu , Zhihai Rong 2009
The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behaviors on the structured scale-free network. On the contrary of the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network while performing the prisoners dilemma (PD) game. Firstly, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated `large-world behavior in the structured scale-free network inhibit the spread of cooperation. The findings may help enlighten further studies on evolutionary dynamics of the PD game in scale-free networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا