Do you want to publish a course? Click here

We study teleparallel gravity in the emph{original} Kaluza-Klein (KK) scenario. Our calculation of the KK reduction of teleparallel gravity indicates that the 5-dimensional torsion scalar $^{(5)}T$ generates the non-Brans-Dicke type effective Lagrangian in 4-dimension due to an additional coupling between the derivative of the scalar field and torsion, but the result is equivalent to that in general relativity. We also discuss the cosmological behavior in the FLRW universe based on the effective teleparallel gravity.
We study teleparallel gravity in five-dimensional spacetime with particular discussions on Kaluza-Klein (KK) and braneworld theories. We directly perform the dimensional reduction by differential forms. In the braneworld theory, the teleparallel gravity formalism in the Friedmann-Lema^{i}tre-Robertson-Walker cosmology is equivalent to GR due to the same Friedmann equation, whereas in the KK case the reduction of our formulation does not recover the effect as GR of 4-dimensional spacetime.
The spin-orbit interaction generally leads to spin splitting (SS) of electron and hole energy states in solids, a splitting that is characterized by a scaling with the wavevector $bf k$. Whereas for {it 3D bulk zincblende} solids the electron (heavy hole) SS exhibits a cubic (linear) scaling with $k$, in {it 2D quantum-wells} the electron (heavy hole) SS is currently believed to have a mostly linear (cubic) scaling. Such expectations are based on using a small 3D envelope function basis set to describe 2D physics. By treating instead the 2D system explicitly in a multi-band many-body approach we discover a large linear scaling of hole states in 2D. This scaling emerges from hole bands coupling that would be unsuspected by the standard model that judges coupling by energy proximity. This discovery of a linear Dresselhaus k-scaling for holes in 2D implies a different understanding of hole-physics in low-dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا