Do you want to publish a course? Click here

We define toric partial orders, corresponding to regions of graphic toric hyperplane arrangements, just as ordinary partial orders correspond to regions of graphic hyperplane arrangements. Combinatorially, toric posets correspond to finite posets under the equivalence relation generated by converting minimal elements into maximal elements, or sources into sinks. We derive toric analogues for several features of ordinary partial orders, such as chains, antichains, transitivity, Hasse diagrams, linear extensions, and total orders.
We start with a (q,t)-generalization of a binomial coefficient. It can be viewed as a polynomial in t that depends upon an integer q, with combinatorial interpretations when q is a positive integer, and algebraic interpretations when q is the order of a finite field. These (q,t)-binomial coefficients and their interpretations generalize further in two directions, one relating to column-strict tableaux and Macdonalds ``seventh variation of Schur functions, the other relating to permutation statistics and Hilbert series from the invariant theory of GL_n(F_q).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا