Do you want to publish a course? Click here

A family of discontinuous symplectic maps on the cylinder is considered. This family arises naturally in the study of nonsmooth Hamiltonian dynamics and in switched Hamiltonian systems. The transformation depends on two parameters and is a canonical model for the study of bounded and unbounded behavior in discontinuous area-preserving mappings due to nonlinear resonances. This paper provides a general description of the map and points out its connection with another map considered earlier by Kesten. In one special case, an unbounded orbit is explicitly constructed.
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
The classical linear search problem is studied from the view point of Hamiltonian dynamics. For the specific, yet representative case of exponentially distributed position of the hidden object, we show that the optimal plan follows an unstable separatrix which is present in the associated Hamiltonian system.
It is shown that there exists a dihedral acute triangulation of the three-dimensional cube. The method of constructing the acute triangulation is described, and symmetries of the triangulation are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا