Do you want to publish a course? Click here

Imagine a task in which a group of separated players aim to simulate a statistic that violates a Bell inequality. Given measurement choices the players shall announce an output based solely on the results of local operations -- which they can discuss before the separation -- on shared random data and shared copies of a so-called unit correlation. In the first part of this article we show that in such a setting the simulation of any bipartite correlation, not containing the possibility of signaling, can be made arbitrarily accurate by increasing the number of shared Popescu-Rohrlich (PR) boxes. This establishes the PR box as a simple asymptotic unit of bipartite nonlocality. In the second part we study whether this property extends to the multipartite case. More generally, we ask if it is possible for separated players to asymptotically reproduce any nonsignaling statistic by local operations on bipartite unit correlations. We find that non-adaptive strategies are limited by a constant accuracy and that arbitrary strategies on n resource correlations make a mistake with a probability greater or equal to c/n, for some constant c.
Central cryptographic functionalities such as encryption, authentication, or secure two-party computation cannot be realized in an information-theoretically secure way from scratch. This serves as a motivation to study what (possibly weak) primitives they can be based on. We consider as such starting points general two-party input-output systems that do not allow for message transmission, and show that they can be used for realizing unconditionally secure bit commitment as soon as they are non-trivial, i.e., cannot be securely realized from distributed randomness only.
97 - Stefan Wolf 2009
Quiver Grassmannians and quiver flags are natural generalisations of usual Grassmannians and flags. They arise in the study of quiver representations and Hall algebras. In general, they are projective varieties which are neither smooth nor irreducible. We use a scheme theoretic approach to calculate their tangent space and to obtain a dimension estimate similar to one of Reineke. Using this we can show that if there is a generic representation, then these varieties are smooth and irreducible. If we additionally have a counting polynomial we deduce that their Euler characteristic is positive and that the counting polynomial evaluated at zero yields one. After having done so, we introduce a geometric version of BGP reflection functors which allows us to deduce an even stronger result about the constant coefficient of the counting polynomial. We use this to obtain an isomorphism between the Hall algebra at q=0 and Reinekes generic extension monoid in the Dynkin case.
138 - Stefan Wolf 2009
Let Q be a quiver. M. Reineke and A. Hubery investigated the connection between the composition monoid, as introduced by M. Reineke, and the generic composition algebra, as introduced by C. M. Ringel, specialised at q=0. In this thesis we continue their work. We show that if Q is a Dynkin quiver or an oriented cycle, then the composition algebra at q=0 is isomorphic to the monoid algebra of the composition monoid. Moreover, if Q is an acyclic, extended Dynkin quiver, we show that there exists an epimorphism from the composition algebra at q=0 to the monoid algebra of the composition monoid, and we describe its non-trivial kernel. Our main tool is a geometric version of BGP reflection functors on quiver Grassmannians and quiver flags, that is varieties consisting of filtrations of a fixed representation by subrepresentations of fixed dimension vectors. These functors enable us to calculate various structure constants of the composition algebra. Moreover, we investigate geometric properties of quiver flags and quiver Grassmannians, and show that under certain conditions, quiver flags are irreducible and smooth. If, in addition, we have a counting polynomial, these properties imply the positivity of the Euler characteristic of the quiver flag.
Two parts of an entangled quantum state can have a correlation in their joint behavior under measurements that is unexplainable by shared classical information. Such correlations are called non-local and have proven to be an interesting resource for information processing. Since non-local correlations are more useful if they are stronger, it is natural to ask whether weak non-locality can be amplified. We give an affirmative answer by presenting the first protocol for distilling non-locality in the framework of generalized non-signaling theories. Our protocol works for both quantum and non-quantum correlations. This shows that in many contexts, the extent to which a single instance of a correlation can violate a CHSH inequality is not a good measure for the usefulness of non-locality. A more meaningful measure follows from our results.
Non-local correlations are not only a fascinating feature of quantum theory, but an interesting resource for information processing, for instance in communication-complexity theory or cryptography. An important question in this context is whether the resource can be distilled: Given a large amount of weak non-local correlations, is there a method to obtain strong non-locality using local operations and shared randomness? We partly answer this question by no: CHSH-type non-locality, the only possible non-locality of binary systems, which is not super-strong, but achievable by measurements on certain quantum states, has at best very limited distillability by any non-interactive classical method. This strongly extends and generalizes what was previously known, namely that there are two limits that cannot be overstepped: The Bell and Tsirelson bounds. Moreover, our results imply that there must be an infinite number of such bounds. A noticeable feature of our proof of this purely classical statement is that it is quantum mechanical in the sense that (both novel and known) facts from quantum theory are used in a crucial way to obtain the claimed results. One of these results, of independent interest, is that certain mixed entangled states cannot be distilled without communication. Weaker statements, namely limited distillability, have been known for Werner states.
112 - Stefan Wolf 2007
We show that the generic Hall algebra of nilpotent representations of an oriented cycle specialised at $q=0$ is isomorphic to the generic extension monoid in the sense of Reineke. This continues the work of Reineke.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا