Do you want to publish a course? Click here

In this note we classify invariant star products with quantum momentum maps on symplectic manifolds by means of an equivariant characteristic class taking values in the equivariant cohomology. We establish a bijection between the equivalence classes and the formal series in the second equivariant cohomology, thereby giving a refined classification which takes into account the quantum momentum map as well.
198 - Stefan Waldmann 2015
In this review an overview on some recent developments in deformation quantization is given. After a general historical overview we motivate the basic definitions of star products and their equivalences both from a mathematical and a physical point of view. Then we focus on two topics: the Morita classification of star product algebras and convergence issues which lead to the nuclear Weyl algebra.
129 - Stefan Waldmann 2012
A bilinear form on a possibly graded vector space $V$ defines a graded Poisson structure on its graded symmetric algebra together with a star product quantizing it. This gives a model for the Weyl algebra in an algebraic framework, only requiring a field of characteristic zero. When passing to $mathbb{R}$ or $mathbb{C}$ one wants to add more: the convergence of the star product should be controlled for a large completion of the symmetric algebra. Assuming that the underlying vector space carries a locally convex topology and the bilinear form is continuous, we establish a locally convex topology on the Weyl algebra such that the star product becomes continuous. We show that the completion contains many interesting functions like exponentials. The star product is shown to converge absolutely and provides an entire deformation. We show that the completion has an absolute Schauder basis whenever $V$ has an absolute Schauder basis. Moreover, the Weyl algebra is nuclear iff $V$ is nuclear. We discuss functoriality, translational symmetries, and equivalences of the construction. As an example, we show how the Peierls bracket in classical field theory on a globally hyperbolic spacetime can be used to obtain a local net of Weyl algebras.
66 - Stefan Waldmann 2012
In these lecture notes we discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed including a detailed treatment of the Cauchy problem on a globally hyperbolic manifold both for the smooth and finite order setting. As application, the classical Poisson algebra of polynomial functions on the initial values and the dynamical Poisson algebra coming from the wave equation are related. The text contains an introduction to the theory of distributions on manifolds as well as detailed proofs.
In this work various symbol spaces with values in a sequentially complete locally convex vector space are introduced and discussed. They are used to define vector-valued oscillatory integrals which allow to extend Rieffels strict deformation quantization to the framework of sequentially complete locally convex algebras and modules with separately continuous products and module structures, making use of polynomially bounded actions of $mathbb{R}^n$. Several well-known integral formulas for star products are shown to fit into this general setting, and a new class of examples involving compactly supported $mathbb{R}^n$-actions on $mathbb{R}^n$ is constructed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا