Do you want to publish a course? Click here

Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, can self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode, and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization, by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott-insulator or a superfluid, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the system is superfluid. These states could be realized in existing experimental setups.
We investigate a paradigm example of cavity quantum electrodynamics with many body systems: an ultracold atomic gas inside a pumped optical resonator. In particular, we study the stability of atomic insulator-like states, confined by the mechanical potential emerging from the cavity field spatial mode structure. As in open space, when the optical potential is sufficiently deep, the atomic gas is in the Mott-like state. Inside the cavity, however, the potential depends on the atomic distribution, which determines the refractive index of the medium, thus altering the intracavity field amplitude. We derive the effective Bose-Hubbard model describing the physics of the system in one dimension and study the crossover between the superfluid -- Mott insulator quantum states. We determine the regions of parameters where the atomic insulator states are stable, and predict the existence of overlapping stability regions corresponding to competing insulator-like states. Bistable behavior, controlled by the pump intensity, is encountered in the vicinity of the shifted cavity resonance.
We show theoretically that two atomic dipoles in a resonator constitute a non-linear medium, whose properties can be controlled through the relative position of the atoms inside the cavity and the detuning and intensity of the driving laser. We identify the parameter regime where the system operates as a parametric amplifier, based on the cascade emission of the collective dipole of the atoms, and determine the corresponding spectrum of squeezing of the field at the cavity output. This dynamics could be observed as a result of self-organization of laser-cooled atoms in resonators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا