Do you want to publish a course? Click here

A set of localized, non-Abelian anyons - such as vortices in a p_x + i p_y superconductor or quasiholes in certain quantum Hall states - gives rise to a macroscopic degeneracy. Such a degeneracy is split in the presence of interactions between the anyons. Here we show that in two spatial dimensions this splitting selects a unique collective state as ground state of the interacting many-body system. This collective state can be a novel gapped quantum liquid nucleated inside the original parent liquid (of which the anyons are excitations). This physics is of relevance for any quantum Hall plateau realizing a non-Abelian quantum Hall state when moving off the center of the plateau.
In this chapter we discuss aspects of the quantum critical behavior that occurs at a quantum phase transition separating a topological phase from a conventionally ordered one. We concentrate on a family of quantum lattice models, namely certain deformations of the toric code model, that exhibit continuous quantum phase transitions. One such deformation leads to a Lorentz-invariant transition in the 3D Ising universality class. An alternative deformation gives rise to a so-called conformal quantum critical point where equal-time correlations become conformally invariant and can be related to those of the 2D Ising model. We study the behavior of several physical observables, such as non-local operators and entanglement entropies, that can be used to characterize these quantum phase transitions. Finally, we briefly consider the role of thermal fluctuations and related phase transitions, before closing with a short overview of field theoretical descriptions of these quantum critical points.
Quantum mechanical systems, whose degrees of freedom are so-called su(2)_k anyons, form a bridge between ordinary SU(2) spin systems and systems of interacting non-Abelian anyons. Such a connection can be made for arbitrary spin-S systems, and we explicitly discuss spin-1/2 and spin-1 systems. Anyonic spin-1/2 chains exhibit a topological protection mechanism that stabilizes their gapless ground states and which vanishes only in the limit (k to infinity) of the ordinary spin-1/2 Heisenberg chain. For anyonic spin-1 chains we find their phase diagrams to closely mirror the one of the biquadratic SU(2) spin-1 chain. Our results describe at the same time nucleation of different 2D topological quantum fluids within a `parent non-Abelian quantum Hall state, arising from a macroscopic occupation of localized, interacting anyons. The edge states between the `nucleated and the `parent liquids are neutral, and correspond precisely to the gapless modes of the anyonic chains.
Indistinguishable particles in two dimensions can be characterized by anyonic quantum statistics more general than those of bosons or fermions. Such anyons emerge as quasiparticles in fractional quantum Hall states and certain frustrated quantum magnets. Quantum liquids of anyons exhibit degenerate ground states where the degeneracy depends on the topology of the underlying surface. Here we present a novel type of continuous quantum phase transition in such anyonic quantum liquids that is driven by quantum fluctuations of topology. The critical state connecting two anyonic liquids on surfaces with different topologies is reminiscent of the notion of a `quantum foam with fluctuations on all length scales. This exotic quantum phase transition arises in a microscopic model of interacting anyons for which we present an exact solution in a linear geometry. We introduce an intuitive physical picture of this model that unifies string nets and loop gases, and provide a simple description of topological quantum phases and their phase transitions.
Close-packed, classical dimer models on three-dimensional, bipartite lattices harbor a Coulomb phase with power-law correlations at infinite temperature. Here, we discuss the nature of the thermal phase transition out of this Coulomb phase for a variety of dimer models which energetically favor crystalline dimer states with columnar ordering. For a family of these models we find a direct thermal transition from the Coulomb phase to the dimer crystal. While some systems exhibit (strong) first-order transitions in correspondence with the Landau-Ginzburg-Wilson paradigm, we also find clear numerical evidence for continuous transitions. A second family of models undergoes two consecutive thermal transitions with an intermediate paramagnetic phase separating the Coulomb phase from the dimer crystal. We can describe all of these phase transitions in one unifying framework of candidate field theories with two complex Ginzburg-Landau fields coupled to a U(1) gauge field. We derive the symmetry-mandated Ginzburg-Landau actions in these field variables for the various dimer models and discuss implications for their respective phase transitions.
We discuss how to construct models of interacting anyons by generalizing quantum spin Hamiltonians to anyonic degrees of freedom. The simplest interactions energetically favor pairs of anyons to fuse into the trivial (identity) channel, similar to the quantum Heisenberg model favoring pairs of spins to form spin singlets. We present an introduction to the theory of anyons and discuss in detail how basis sets and matrix representations of the interaction terms can be obtained, using non-Abelian Fibonacci anyons as example. Besides discussing the golden chain, a one-dimensional system of anyons with nearest neighbor interactions, we also present the derivation of more complicated interaction terms, such as three-anyon interactions in the spirit of the Majumdar-Ghosh spin chain, longer range interactions and two-leg ladders. We also discuss generalizations to anyons with general non-Abelian su(2)_k statistics. The k to infinity limit of the latter yields ordinary SU(2) spin chains.
Two-dimensional quantum loop gases are elementary examples of topological ground states with Abelian or non-Abelian anyonic excitations. While Abelian loop gases appear as ground states of local, gapped Hamiltonians such as the toric code, we show that gapped non-Abelian loop gases require non-local interactions (or non-trivial inner products). Perturbing a local, gapless Hamiltonian with an anticipated ``non-Abelian ground-state wavefunction immediately drives the system into the Abelian phase, as can be seen by measuring the Hausdorff dimension of loops. Local quantum critical behavior is found in a loop gas in which all equal-time correlations of local operators decay exponentially.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا